Attachment A WRIA 25/26 Grays-Elochoman and Cowlitz Watershed Management Plan Reserved Water Strategy Implementation

Policy Background

The reserved water strategy outlined in the WRIA 25/26 Grays-Elochoman and Cowlitz Watershed Management Plan (hereafter Plan) is based upon the following policies and goals that are designed to balance the objectives of water supply and stream flow protection:

"Public and private water users throughout WRIAs 25 and 26 should have access to water resources to meet new or expanded needs for water supply consistent with adopted land use plans. To facilitate coordinated planning and ensure consistency with adopted land use plans, decisions regarding water use and allocation should be coordinated between Department of Ecology and affected jurisdictions." (Policy WSP-1, Pg 3-9)

"Water resource development to meet new or expanded needs should avoid or minimize effects on stream flows or aquatic habitat, in stream reaches where flow conditions are an important factor for sustaining aquatic life, including fish populations in their various life stages." (Policy WSP-2, Pg 3-19)

"Manage stream flows to effectively support fish recovery and habitat enhancement plans." (Goal, Section 4.1, Pg 4-1)

Much of the policy discussion that provides the foundation and rationale for the reserved water concept is found in Section 4.1.1 of the Plan. This discussion emphasizes the need to identify water sources that will not cause significant effects on stream flow or aquatic habitat. As part of the instream flow protection strategy, the Planning Unit recommended Policy SFP-2 (Pg 4-6), which would restrict issuance of new water rights that would reduce low flows, except under certain pre-defined circumstances. This policy "recognizes that total closure of streams to all new water right applications would conflict with the goal of ensuring adequate water supplies are available for the region (Pg 4-3)". Therefore the policy has conditions for:

- Domestic wells, served by septic systems;
- Specific communities that may not have access to alternative supplies. In these cases a pre-defined quantity of water will be "reserved" for possible allocation to that community. The reserved quantity will be defined in terms of the unmitigated stream flow depletion that will result from development of new supply capacity; and
- Other communities and industries that may need supplies in the future, but whose needs cannot be well-defined at this time. Again, a pre-defined quantity will be reserved to meet these needs.

The reserved supplies discussed above (except for domestic wells) can be tapped only if the community first demonstrates there is no other practicable alternative, commits to effective stewardship through conservation and/or production of reclaimed water; and commits to offsetting actions and mitigating actions that minimize the effects on stream flow or aquatic habitat. Actions will be evaluated within the context of other supply alternatives, water supply total project cost, and the cost of the off-setting and mitigating actions. The procedure for municipalities to follow when requesting new or expanded water rights is found in Section 3.3.1 (Pg 3-10). Additional discussion and guidance relating to reservations and related mitigation is found in Appendix I (Pg I-6).

Determination of Reservation Quantities

Reservation quantities were established by the Planning Unit based primarily upon the following:

- Anticipated needs for municipalities and other user groups through 2020 (Policy SFP-2, Pg 4-18 through Pg 4-20); and
- Recommendations presented by the Washington Departments of Fish and Wildlife (WDFW) and Ecology for protection of instream flows (Appendix I, Pg I-28).

Anticipated needs were determined based upon growth projections and estimates associated with the various categories of water users, including large and small public water systems, domestic wells, and other beneficial uses. The forecasts were obtained from purveyor water system plans or other planning documents and were described in terms of average day demand (ADD) and maximum day demands (MDD) expressed in millions of gallons per day. Projected demands were compared to existing water right availability and capacity to determine projected future supply needs.

WDFW and Ecology provided the Planning Unit with recommendations for establishing water right reservations. The rationale for their recommendations is described in an October 4, 2004 memo from WDFW (Pgs I-28 through I-30). To determine acceptable flow reserves, the agencies identified flow quantities that equate to 1-2% reduction in wetted usable area for species of concern during the 90% exceedence flows in September and October. For watersheds where instream flow studies were not conduced, a 1-2% reduction in flow from the 90% exceedence flow during the low flow season was used as a surrogate. Thus the recommendations were based on very low-flow conditions (9 out of 10 days are as wet or wetter for that date). Because of their sensitivity to flow reduction, small streams were not recommended for establishment of reserves.

The final water right reservations reflected in the Plan represent a balance of the above considerations. Section 3.3.1 (Pg 3-12) describes water reservations as follows:

"In order to satisfy the goals associated with the establishment of closures and/or instream flows, and the goals associated with providing a secure source of water for future public water supply, it is recommended that in each basin a block of water be reserved for future

uses that would not be subject to the closures and/or instream flows established by rules for WRIAs 25 and 26."

In many cases reservation quantities were consistent with WDFW and Ecology recommendations for instream flow protection. In other cases reservations to meet growth needs were established in areas where none were recommended by state agencies. Several reservations were also negotiated during the final plan development and adoption phases based on revised supply need considerations.

Reservation quantities were established and agreed upon based on the understanding that implementing the long-term water supply (e.g., regional source development) and stream flow strategies (e.g., regional source development) should result in improved instream flow conditions. Reservations should thus be viewed as negotiated quantities that are intended to represent an overall balance between instream flow and supply needs, within the context of the long-term strategies for water management and mitigation to offset stream impacts.

Definition of Water Reservation:

During the final stages of the 2006 remand process in WRIA 25/26, county concerns were raised regarding adequacy of reservations for several entities, as well as whether the table headings accurately reflected the reservation strategy. Concerns included whether identifying the previously defined "net streamflow depletion allowance" as the reservation amount in rule would create situations where only 50% of calculated water needs (Maximum Streamflow Depletion Allowance, 2004 Plan Table I-2a) could be secured because of the following limitation:

"Even in these limited cases, the amount of stream flow depletion from new water rights issued under this policy shall be no greater than the quantity shown in Table I-2a, under the column heading Net Stream Flow Depletion Allowance." (December 2004 Plan, Pg I-6).

Under the above original Plan language, if the "net stream flow depletion after mitigation" quantity was calculated assuming that a 50% flow offset was possible, but in practice it was not, an applicant would only be entitled to 50% of their needed water supply and could not secure the remainder through mitigation. This was viewed as contrary to Plan guidance that allowed for mitigation of streamflow depletion through flow-related and/or habitat actions. As a result of this concern, the Planning Unit revised the Plan language and tables relating to water reservations.

The adopted Plan included changes to the quantity of water identified as the reservation. The discussion of reservations in Section 4.1.1 (Pg 4-3) states that the pre-defined quantity of water reserved for allocation will be defined in terms of the "unmitigated stream flow depletion that will result from development of new supply capacity". Policy SFP-2 (Pg 4-6 and 4-18) also states that the reserved quantity for domestic wells, community systems, municipal systems and other beneficial uses represents the "unmitigated stream flow depletion" in each subbbasin. The relationship between stream flow depletion and water reservations was further clarified in revisions to Sections 3.3.1 (Pg 3-11) and Appendix I (Pg I-6). These sections state the following:

"In no case shall the amount of stream flow depletion from new water rights issued under this policy exceed the quantity shown in Table I-2, under the column heading "unmitigated streamflow depletion allowance", or the 2% recommended flow reserves (column 4, "recommendation for flow reserve") outlined in the October 4, 2004 memo from WDFW (see page I-29), **whichever is less**, subject to the following exceptions: for the Grays River, Skamokawa Creek, Elochoman River, and Abernathy/Germany Creek Subbasins, the amount of stream flow depletion under this policy shall not exceed the quantity shown in Table I-2, under the "unmitigated streamflow depletion allowance" column."

The above wording further establishes the reservation as the "unmitigated stream flow depletion", but also references use of the 2% recommend flow reserve, with specific exceptions, if that quantity is less.

The above changes highlighted the need to ensure that the reservation tables accurately reflect the sequential relationship between unmitigated stream flow, offset requirements, and the resulting target depletion allowance. Tables ES-3 (Pg ES-12), 4-4 (Pg 4-20 through 4-22), I-2 (Pgs I-17 through 19 – attached), and I-2a (Pgs H-19 through H-24 - attached), were modified to include the following three columns:

- "Unmitigated Streamflow Depletion Allowance" this column represents the water reservation based on supply need through 2020;
- "Water Right Acquisition/Flow Augmentation Offset (Maximum Extent Practicable)" this column refers to the requirement of water users to offset at least 50 percent of their future water uses through acquisition of water rights or flow augmentation, to the maximum practicable. This column does not apply to domestic wells; and
- "Target Streamflow Depletion Allowance" this column is calculated as the unmitigated streamflow depletion minus the Water Right Acquisition/Flow Augmentation Offset requirement.

These table revisions were intended to more clearly describe the sequential relationship between reservations and mitigation and the intent of each column heading, and to ensure that an applicant's ability to secure use of the reservation through mitigation is not precluded.

Implementation Roles and Responsibilities:

The Plan recognizes that the Department of Ecology is the entity responsible for making water right permit decisions and applying the reservation strategy, and also acknowledges the role of WDFW in evaluating requests for reservation use. In addition, the Plan calls for coordination with affected entities. Sections 3.3.1 (Pg 3-10 through 3-12) and Appendix I (Pg I-6 and I-7) describe the following roles and responsibilities:

"The Department of Ecology has the responsibility for reviewing water right applications. Under its current process, Ecology issues water right permits only if the proposed use meets the following requirements, in accordance with RCW 90.03.290..." "The Planning Unit recommends that Ecology (in conjunction with Fish & Wildlife) evaluate requests for reservation use by reviewing the applicant's analysis of other alternatives <u>and</u> by evaluating the applicant's proposal in terms of off-setting and mitigating actions." (Section 3.3.1, Pg 3-11; Appendix I, Pg I-6)

"Application for the reservation will be reviewed, analyzed, and processed by Ecology in consultation by Fish & Wildlife"... (Appendix I, Pg I-5)

"The Planning Unit recommends that decisions regarding the use of water right reservations be coordinated between the affected County, local governmental entities, Department of Ecology, and the Planning Unit." (Section 3.3.1, Pg 3-12; Appendix I, Pg I-7)

These Plan sections re-affirm the regulatory and decision-making role of Ecology and WDFW, and also establish coordination roles for Counties, local governmental entities, and the Planning Unit. Specific coordination functions and roles are not described in the Plan, but will be defined in Section 3 (Roles and Responsibilities) of the Detailed Implementation Plan (DIP).

Water Reservation Accounting

The Plan does not outline a formal accounting process for tracking "debits" and "credits" associated with implementation of the reserved water strategy and mitigation banking. However, successful implementation of the reserved water strategy will require that Ecology, as the primary regulatory entity, establish an accounting system that addresses the various Plan elements.

The Plan identifies several categories of mitigation actions related to the decision making process outlined in Section 3.3.1 and Appendix I. These mitigation actions will be used to determine mitigation "credits" and "debits" related to use of the reservation. In some cases mitigation actions relate to specific steps in the decision-making process (e.g., determination of 50% flow requirement), but in other cases the intended application is broader and not associated with a single step in the evaluation process. The following is a summary of the mitigation action types recognized in the Plan, along with a description of their relationship to the evaluation process:

• "...where an applicant applies for a water right under a reservation, they be required to mitigate the predicted stream flow depletion to the maximum extent practicable through flow-related actions..." (Appendix I, Pg I-6; Section 3.3.1, Pg 3-11).

This language is not specific to any particular step in the decision making process and establishes that in developing an overall mitigation package for evaluation, applicants must rely upon flow-related actions to the maximum extent practicable.

• "No less than half of the unmitigated stream flow depletion (see Table I-2) must be offset through the acquisition of active upstream water rights or other flow augmenting actions in the same subbasin upstream of the new proposed water right." (Appendix I, Pg I-6; Section 3.3.1, Pg 3-11).

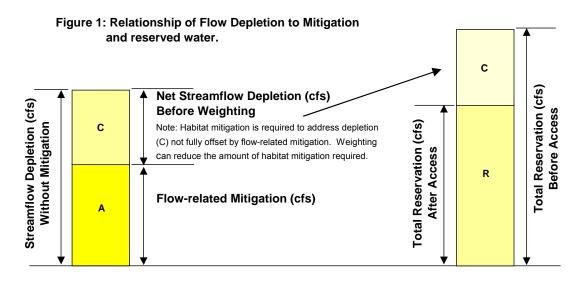
This language establishes the minimum 50% flow mitigation requirement, and establishes that active water right acquisition and other flow augmenting actions can be used to

satisfy this requirement. This language refers specifically to the "Water Right Acquisition/Flow Augmentation Offset" columns in Tables I-2 and I-2a.

• "In these limited cases, acquisition of offsetting active water rights or flow augmentation actions shall be implemented to the extent feasible. Any remaining streamflow depletion shall be mitigated through other habitat actions designed to mitigate the effects of the stream flow depletion not being directly offset." (Appendix I, Pg I-6; Section 3.3.1, Pg 3-11 and 3-12)

This language refers to situations when achieving the 50% flow mitigation through acquisition of active water rights and flow augmenting actions is not feasible or is costprohibitive. This wording establishes that under the specified circumstances habitat actions can be used to mitigate flow impacts. This language refers specifically to the "Water Right Acquisition/Flow Augmentation Offset" columns in Tables I-2 and I-2a.

• "The Planning Unit recommends that Ecology consider other mitigating actions to address impacts that cannot be practicably off-set (no more than half) through water-for-water actions. This includes actions such as the restoration of wetlands and side-channels that increase stream storage capacity. The Planning Unit supports consideration of mitigation credits for stream flow augmentation actions." (Appendix I, Pg I-7; Section 3.3.1, Pg 3-11 and 3-12)


The above language is **distinct and separate from** the previous provisions relating to situations where providing the 50% flow mitigation is not practicable. Given the separation of this discussion from the previous bullet, and the reference to actions that cannot be practicably off-set through water-for-water actions, this establishes that habitat actions such as wetland and side-channel restoration can be used to address residual impacts associated with the "Target Streamflow Depletion Allowance" columns.

- "The Planning Unit recommends that Ecology consider habitat restoration actions other than the restoration of wetlands and side-channels using the following criteria:
 - habitat actions should focus upon projects that improve stream conditions impaired by flow (e.g., projects that improve width to depth relationships or improve landscape-level hydrologic processes, etc.);
 - habitat actions should address threats and limiting factors through priority actions identified in the Lower Columbia Salmon Recovery Plan;
 - habitat actions should be evaluated within the context of when baseflow impacts will occur and the expected timeframe of habitat project benefits. (Section 3.3.1, Pg 3-11 and 3-12);

This language is also separate from the previous two bullets, is not associated with a specific step in the mitigation process, and establishes that habitat actions focusing on improving conditions impaired by flow or addressing priority habitat limiting factors can be used to off-set stream impacts. This category can therefore also be used to address impacts associated with the "Target Streamflow Depletion Allowance".

The following (Figure 1) is a graphic representation of the relationship between mitigation actions, flow depletion and reservation accounting. The primary approach for mitigating streamflow depletion impacts is through flow-related actions. As described above, the Plan guidance and requirements emphasize that flow related actions must be used to the maximum

extent practicable in developing an overall mitigation package. The Plan calls for use of direct water right acquisition or other flow augmenting actions as the primary means to address the "Water Right Acquisition/Flow Augmentation Offset" (Segment A), with use of habitat actions where this is not feasible. If streamflow depletion is fully mitigated through flow-related actions, the reservation would not be debited and would remain available for future access. However, if impacts are only partially offset or not offset at all through flow-related actions (Figure 1, Segment A), the remaining streamflow depletion (Figure 1, Segment C) is "debited" from the reserve. As depicted in Segment C, habitat actions will also be required to offset net streamflow depletion impacts, but will not be used to reduce the amount of "debit" from the reservation. However, additional instream flow benefits that result in up-weighting of the flow-related mitigation credits can be used to reduce the amount of habitat mitigation required to address net stream flow depletion as represented by Segment C.¹

Addressing Water Reservations in Rule:

The WRIA Plan calls for incorporation of water right reservations into State Rules. Specifically, Policy SFP-2 (Pgs 4-6 and 4-18) states the following:

"The Department of Ecology should adopt State Rules (WACs) under its Instream Resources Protection Program to restrict issuance of new water rights in WRIAs 25 and 26. In all affected streams reaches a closure should be established, but with certain exceptions as indicated below."

In addition, the discussion of water reservations in Section 3.3.1 includes the following recommendation:

"In order to satisfy the goals associated with the establishment of closures and/or instream flows, and the goals associated with providing a secure source of water for

¹ See Integrated Strategy for Implementing Water Right Reservations, Section 2.0 (Reservation Accounting), for a description of flow-related mitigation up-weighting.

future public water supply, it is recommended that in each basin a block of water be reserved for future uses that would not be subject to the closures and/or instream flows established by rules for WRIAs 25 and 26". (Recommendation, Page 3-12)

Pages 3-12 and 3-13 provides further guidance regarding incorporation of water reservations into state rule:

"The amount of water, the entity, and the source(s) of the water to be reserved for public supply is recommended by the Planning Unit in Appendix I (Table I-2) and is intended to be stated in the proposed stream flow protection rules to be adopted by the Department of Ecology for WRIAs 25 and 26"

The WRIA 25/26 Plan clearly calls for providing water reservations in rule, and refers to Table I-2 for further defining the content of this rule. Table I-2 includes the three columns described above, including the "unmitigated stream flow depletion" quantity. Because Section 4.1.1 (Pg 4-3) and Policy SFP-2 (Pg 4-6 and 4-18) define the "unmitigated stream flow depletion" as the water reservation amount, this quantity should be identified as such in rule. Application of the reservation strategy must also be within the context of the additional guidance and procedures found in Sections 3.3.1 (Pg 3-11) and Appendix I (Pg I-6), discussed above. The following should therefore be incorporated as part of the rule language:

- Sections 3.3.1 (Pg 3-11 through 3-13) and Appendix I Section IV (Pgs I-6 and I-7); and
- Tables ES-3 (Pg ES-12), 4-4 (Pg 4-20 through 4-22), I-2 (Pgs I-17 through 19 attached), and I-2a (Pgs H-19 through H-24)

Attachments: Table I Table I-2a

Table I-2						
Water Right Reservation	n Summary fo	or WRIAs 25/26				
Water User ⁽¹⁾	Unmitigated Streamflow Depletion Allowance (cfs) ⁽²⁾	Water Right Acquisition/Flow Augmentation Offset (Maximum Extent Practicable ⁽⁷⁾)(cfs) ⁽³⁾	Target Streamflow Depletion Allowance (cfs) ⁽⁴⁾			
Grays River Subbasin						
Wahkiakum PUD	0.30	0.15	0.15			
Small Community Water Systems- Wahkiakum Co.	0.75	0.37	0.37			
Domestic Wells – Wahkiakum Co.	0.20	0.00	0.20			
Subbasin Total	1.25		0.72			
Skamokawa Creek Subbasin						
Domestic Wells	0.20	0.00	0.20			
Subbasin Total	0.20		0.20			
Elochoman River Subbasin			-			
Cathlamet	0.00	0.00	$0.00^{(5)}$			
Small Community Water Systems – Wahkiakum Co.	0.37	0.19	0.19			
Domestic Wells – Wahkiakum Co.	0.20	0.00	0.20			
Subbasin Total	0.57		0.39			
Abernathy/Germany Creek Subbasin						
Wahkiakum Co. Portion						
Domestic Wells	0.07	0.00	0.07			
Cowlitz Co. Portion						
Domestic Wells	0.36	0.00	0.36			
Subbasin Total	0.43		0.43			
Coal Creek/Longview Slough Subbasin						
Not Applicable (restrictions on new water rights not p	proposed) N/A	L Contraction of the second seco				
Upper Cowlitz River Subbasin						
Randle – Other Beneficial Uses	0.24	0.12	0.12			
Packwood	0.00	0.00	$0.00^{(5)}$			
Small Community Water Systems – Lewis Co.	0.37	0.19	0.19			
Domestic Wells – Lewis Co.	0.01	0.00	0.01			
Other Beneficial Uses – Lewis Co.	0.75	0.37	0.37			
Subbasin Total	1.37		0.69			
Cispus River Subbasin						
Lewis Co. Portion	0.5-	0.40	0.10			
Small Community Water Systems – Lewis Co.	0.37	0.19	0.19			
Domestic Wells – Lewis Co.	0.01	0.00	0.01			
Other Beneficial Uses – Lewis Co.	0.37	0.19	0.19			
Skamania Co. Portion						
Small Community Water Systems – Skamania Co.	0.5-	0.40	0.10			
	0.37	0.19	0.19			
Domestic Wells Skamania Co.	0.01	0.00	0.01			
Other Beneficial Uses – Skamania Co.	0.37	0.19	0.19			
Subbasin Total	1.5		0.78			
Tilton River Subbasin			0.00(5)			
Morton	0.27	0.10	0.00 ⁽⁵⁾			
Small Community Water Systems – Lewis Co.	0.37	0.19	0.19			
Domestic Wells – Lewis Co.	0.01	0.00	0.01			
Other Beneficial Uses – Lewis Co.	0.37	0.19	0.19			
Subbasin Total	0.75		0.39			

Unmitigated Streamflow Depletion Allowance (cfs)(2)Augmentation Offset (Maximum Extent Practi- cable(7) (cfs)(3)StrMayfield Dam Subbasin Mossyrock0.200.10AllMossyrock0.200.10Small Community Water Systems – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.370.19Subbasin Total0.95Toutle River Subbasin Lewis Co. Portion0.370.19Domestic Wells – Lewis Co.0.370.19Subbasin Total0.95Community Water Systems – Lewis Co.0.370.19Community Water Systems – Lewis Co.0.370.19Community Water Systems – Lewis Co.0.370.19Community Water Systems – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.370.19Small Community Water Systems – Lewis Co.0.370.19Cowlitz Co. Portion Small Community Water Systems – Cowlitz0.370.19	Farget reamflow epletion lowance (cfs) ⁽⁴⁾ 0.10 0.19 0.01 0.19 0.49
Unmitigated StreamflowAcquisition/Flow AugmentationTWater User (1)Depletion Allowance (cfs)(2)Extent Practi- cable(7) (cfs)(3)Allow DepletionMayfield Dam Subbasin Mossyrock0.200.10Small Community Water Systems – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.370.19Subbasin Total0.95Toutle River Subbasin Lewis Co. Portion Small Community Water Systems – Lewis Co.0.370.19Community Water Systems – Lewis Co.0.370.19Subbasin Total0.950.00Construction Small Community Water Systems – Lewis Co.0.370.19Construction Small Community Water Systems – Lewis Co.0.370.19Cowlitz Co. Portion Small Community Water Systems – Cowlitz0.370.19	reamflow epletion lowance (cfs) ⁽⁴⁾ 0.10 0.19 0.01 0.19
Unmitigated Streamflow Depletion Allowance (cfs)(2)Augmentation Offset (Maximum Extent Practi- cable(7) (cfs)(3)StrMayfield Dam Subbasin Mossyrock0.200.10AllMossyrock0.200.10Small Community Water Systems – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.370.19Subbasin Total0.95Toutle River Subbasin Lewis Co. Portion0.370.19Domestic Wells – Lewis Co.0.370.19Subbasin Total0.95Community Water Systems – Lewis Co.0.370.19Community Water Systems – Lewis Co.0.370.19Community Water Systems – Lewis Co.0.370.19Conditional Community Water Systems – Lewis Co.0.370.19Cowlitz Co. Portion Small Community Water Systems – Cowlitz0.370.19	reamflow epletion lowance (cfs) ⁽⁴⁾ 0.10 0.19 0.01 0.19
Water User ⁽¹⁾ Streamflow Depletion Allowance (cfs) ⁽²⁾ Offset (Maximum Extent Practi- cable ⁽⁷⁾)(cfs) ⁽³⁾ Depletion Allowance (cfs) ⁽²⁾ Mayfield Dam Subbasin Mossyrock0.200.10Small Community Water Systems – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.010.00Other Beneficial Uses – Lewis Co.0.370.19Subbasin Total0.95Toutle River Subbasin Lewis Co. Portion Small Community Water Systems – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.370.19Cowlitz Co. Portion Small Community Water Systems – Lewis Co.0.370.19Cowlitz Co. Portion Small Community Water Systems – Cowlitz0.370.19	epletion lowance (cfs) ⁽⁴⁾ 0.10 0.19 0.01 0.19
Water User (1)Depletion Allowance (cfs) (2)Extent Practi- cable (7) (cfs) (3)Allowance (Cfs) (3)Mayfield Dam SubbasinMossyrock 0.20 0.10 Small Community Water Systems – Lewis Co. 0.37 0.19 Domestic Wells – Lewis Co. 0.01 0.00 Other Beneficial Uses – Lewis Co. 0.37 0.19 Subbasin Total 0.95 0.95 Toutle River SubbasinLewis Co. Portion 0.01 Small Community Water Systems – Lewis Co. 0.37 0.19 Domestic Wells – Lewis Co. 0.37 0.19 Community Water Systems – Lewis Co. 0.37 0.19 Domestic Wells – Lewis Co. 0.37 0.19 Domestic Wells – Lewis Co. 0.37 0.19 Domestic Wells – Lewis Co. 0.37 0.19 Cowlitz Co. Portion 0.37 0.19 Small Community Water Systems – Cowlitz 0.37 0.19	0.10 0.19 0.01 0.19
Water User (1)Allowance (cfs) (2)cable (7) ()(cfs) (3)Mayfield Dam SubbasinMossyrock0.200.10Small Community Water Systems – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.010.00Other Beneficial Uses – Lewis Co.0.370.19Subbasin Total0.950.95Toutle River Subbasin0.950.01Lewis Co. Portion0.010.00Other Beneficial Uses – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.370.19Community Water Systems – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.370.19Small Community Water Systems – Lewis Co.0.370.19Cowlitz Co. Portion0.370.19Small Community Water Systems – Cowlitz0.370.19	(cfs) ⁽⁴⁾ 0.10 0.19 0.01 0.19
Mayfield Dam Subbasin0.200.10Mossyrock0.200.10Small Community Water Systems – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.010.00Other Beneficial Uses – Lewis Co.0.370.19Subbasin Total0.950.95Toutle River Subbasin10.95Lewis Co. Portion0.370.19Domestic Wells – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.370.19Community Water Systems – Lewis Co.0.370.19Cowlitz Co. Portion0.370.19Small Community Water Systems – Cowlitz0.370.19	0.10 0.19 0.01 0.19
Mossyrock0.200.10Small Community Water Systems – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.010.00Other Beneficial Uses – Lewis Co.0.370.19Subbasin Total0.950.95Toutle River Subbasin Lewis Co. PortionSmall Community Water Systems – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.370.19Other Beneficial Uses – Lewis Co.0.370.19Cowlitz Co. Portion0.370.19Small Community Water Systems – Cowlitz0.370.19	0.19 0.01 0.19
Small Community Water Systems – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.010.00Other Beneficial Uses – Lewis Co.0.370.19Subbasin Total0.95Toutle River Subbasin	0.19 0.01 0.19
Domestic Wells – Lewis Co.0.010.00Other Beneficial Uses – Lewis Co.0.370.19Subbasin Total0.95Toutle River Subbasin	0.01 0.19
Other Beneficial Uses – Lewis Co.0.370.19Subbasin Total0.95Toutle River Subbasin0.95Lewis Co. Portion0.370.19Small Community Water Systems – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.010.00Other Beneficial Uses – Lewis Co.0.370.19Cowlitz Co. Portion0.370.19Small Community Water Systems – Cowlitz0.370.19	0.19
Subbasin Total0.95Toutle River Subbasin0.95Lewis Co. Portion0.01Small Community Water Systems – Lewis Co.0.37Domestic Wells – Lewis Co.0.01Other Beneficial Uses – Lewis Co.0.37Cowlitz Co. Portion0.37Small Community Water Systems – Cowlitz0.37O.19	
Toutle River SubbasinLewis Co. PortionSmall Community Water Systems – Lewis Co.0.37Domestic Wells – Lewis Co.0.01Other Beneficial Uses – Lewis Co.0.37Cowlitz Co. Portion0.37Small Community Water Systems – Cowlitz0.37O.19	0.42
Lewis Co. Portion0.370.19Small Community Water Systems – Lewis Co.0.010.00Domestic Wells – Lewis Co.0.010.00Other Beneficial Uses – Lewis Co.0.370.19Cowlitz Co. Portion0.370.19Small Community Water Systems – Cowlitz0.370.19	
Small Community Water Systems – Lewis Co.0.370.19Domestic Wells – Lewis Co.0.010.00Other Beneficial Uses – Lewis Co.0.370.19Cowlitz Co. Portion0.370.19Small Community Water Systems – Cowlitz0.370.19	
Domestic Wells – Lewis Co.0.010.00Other Beneficial Uses – Lewis Co.0.370.19Cowlitz Co. Portion50.370.19Small Community Water Systems – Cowlitz0.370.19	0.19
Other Beneficial Uses – Lewis Co.0.370.19Cowlitz Co. PortionSmall Community Water Systems – Cowlitz0.370.19	0.01
Cowlitz Co. PortionSmall Community Water Systems – Cowlitz0.370.19	0.19
Small Community Water Systems – Cowlitz0.370.19	
	0.19
Co.	
Domestic Wells – Cowlitz Co. 0.01 0.00	0.01
Other Beneficial Uses – Cowlitz Co. 0.37 0.19	0.19
Skamania Co. Portion	
Small Community Water Systems – Skamania 0.37 0.19	0.19
Co.	
Domestic Wells – Skamania Co. 0.00 0.00	0.00
Other Beneficial Uses – Skamania Co. 0.37 0.19	0.19
Subbasin Total 2.24	1.14
Coweeman River Subbasin	
Small Community Water Systems – Cowlitz0.370.19	0.19
Co.	
Domestic Wells – Cowlitz Co. 0.01 0.00	0.01
Subbasin Total 0.38	0.20
Lower Cowlitz River Subbasin	
Lewis Co. Portion	
	0.165
Toledo 0.47 0.24	0.24
	$0.00^{(5)}$
Small Community Water Systems – 0.75 0.37	0.37
Lewis Co.	0.01
Domestic Wells – Lewis Co.0.010.00Other Beneficial Uses – Lewis Co.6.63.3	0.01 3.3
Cowlitz Co. Portion	5.5
	NA ⁽⁶⁾
	NA ⁽⁶⁾
	NA ⁽⁶⁾
Castle Rock 2.6 1.3	1.3
Small Community Water 0.75 0.37	0.37
Systems – Cowlitz Co.	
Domestic Wells – Cowlitz Co. 0.01 0.00	0.01
Other Beneficial Uses – Cowlitz County 0.75 0.37	0.37
Notes: (1) Categories of water users include:	6.135

⁽¹⁾ Categories of water users include:

HDR

Lower Columbia Fish Recovery Board

Integrated Strategy for Implementing Water Right Reservations

A-10 Project No. 80479 March 2009 Large Public Water Systems, which are listed individually.

Small Community Water Systems.

Domestic Wells, including those serving multiple homes but exempt from the requirement to apply for a water right permit.

Other Beneficial Uses, such as self-supplied industrial uses.

- (2) Calculated based upon an estimate of additional water rights needed to meet water demands through 2020. The Unmitigated Streamflow Depletion refers to the total amount of streamflow reduction allowed within the subbasin as a result of pumping or diversion. In some cases, the amount is equal to the anticipated need (Qi). In other cases, the amount is lower, recognizing that a portion or all of the need may be met using groundwater supplies. In these cases, the impacts to streams may be lower than the amount of water withdrawn from the aquifer. For domestic wells, the depletion amount (or potential streamflow impact) is calculated as 30% of the anticipated need, taking into account that an estimated 70% of water pumped from such wells is returned to streamflows via septic system returns.
- ⁽³⁾ Refers to the requirement of water users to offset 50 percent of their future water uses through acquisition of water rights or flow augmentation. Does not apply to Domestic Wells.
- (4) Calculated as the Unmitigated Streamflow Depletion minus the Water Right Acquisition/Flow Augmentation Offset requirement. This allowance applies only to impacts upon mainstem flows; it is not intended to allow for extensive dewatering of smaller water bodies. Water right applicants must provide further evidence regarding potential impacts to smaller tributary creeks resulting from new or expanded water resource development.
- ⁽⁵⁾ Current water rights are sufficient to meet needs through year 2020. Therefore no reservation is established.
- ⁽⁶⁾ Not applicable, due to location in tidally influenced area.
- ⁽⁷⁾ See pages I-6 and I-7 for a description of off-setting and mitigation actions.

			Table I				
Wa	Vater Right Reservation Calcu Anticipated Needs (1)			Unmitigated	WRIAS 25/26 Water Right Acquisition/ Flow Augmentation Offset	Target	
	No. of Qa Qi Allowance ''Blocks'' ⁽²⁾ (afy) (cfs) (cfs) ⁽³⁾		(Maximum Extent Practicable ⁽¹⁰⁾) (cfs) ⁽⁴⁾	Streamflow Depletion Allowance (cfs) ⁽⁵⁾			
Grays River Subbasin							
Wahkiakum PUD Small Community	NA	0	0.30	0.30	0.15	0.15	
Water Systems - Wahkiakum Co Domestic Wells -	2	200	0.75	0.75	0.37	0.37	
Wahkiakum Co Subbasin Total	NA	177	0.65	0.20	0.00	0.20 0.72	
Subbushi 10tal Skamokawa Creek Subbasii	n						
Domestic Wells - Wahkiakum Co	NA	177	0.65	0.20	0.00	0.20	
Subbasin Total						0.20	
Elochoman River Subbasin							
Cathlamet Small Community Water Systems -	NA	0	0.00	0.00	0.00	0.00	(6
Wahkiakum Co Domestic Wells -	1	100	0.37	0.37	0.19	0.19	
Wahkiakum Co	NA	177	0.65	0.20	0.00	0.20	
Subbasin Total						0.38	
Abernathy/Germany Creek	Subbasin						
Domestic Wells - Wahkiakum Co Domestic Wells -	NA	59	0.22	0.07	0.00	0.07	
Cowlitz Co Subbasin Total	NA	330	1.21	0.36	0.00	0.36 0.43	
Coal Creek/Longview Sloug Not Applicable (restrictions on new water rights	h Subbasin						
not proposed)						NA	
Upper Cowlitz River Subbas	sin						
Randle ⁽⁷⁾	NA	NA	0.24	0.24	0.12	0.12	
Packwood Small Community	NA	0	0.00	0.00	0.00	0.00	(
Water Systems - Lewis Co	1	100	0.37	0.37	0.19	0.19	
Domestic Wells -	NA	2	0.01	0.01	0.00	0.01	

ЮR

Lower Columbia Fish Recovery Board Integrated Strategy for Implementing Water Right Reservations A-12 Project No. 80479 March 2009

	ator Dight D	osorvat	Table I	-2a culations for	WPIAs 25/26		
	Anticipated Needs ⁽¹⁾		Unmitigated Streamflow Depletion	WRIAS 25/26 Water Right Acquisition/ Flow Augmentation Offset (Maximum Extent	7 Streamflow Depletion Allowance (cfs) ⁽⁵⁾		
	No. of Qa Qi ''Blocks'' ⁽²⁾ (afy) (cfs)		Allowance (cfs) ⁽³⁾	$\frac{\text{Practicable}^{(10)}}{(\text{cfs})}^{(4)}$			
Lewis Co							
Other Beneficial		• • • •					
Uses - Lewis Co	2	200	0.75	0.75	0.37	0.37	
Subbasin Total						0.69	
<i>Cispus River Subbasin</i> Small Community Water Systems - Lewis Co Small Community	1	100	0.37	0.37	0.19	0.19	
Water Systems - Skamania Co	1	100	0.37	0.37	0.19	0.19	
Domestic Wells - Lewis Co Domestic Wells -	NA	2	0.01	0.01	0.00	0.01	
Skamania Co Other Beneficial	NA	2	0.01	0.01	0.00	0.01	
Uses - Lewis Co Other Beneficial Uses - Skamania	1	100	0.37	0.37	0.19	0.19	
Co Subbasin Total	1	100	0.37	0.37	0.19	0.19 0.78	
ilton River Subbasin							
Morton Small Community Water Systems -	NA	0	0.00	0.00	0.00	0.00	
Lewis Co Domestic Wells -	1	100	0.37	0.37	0.19	0.19	
Lewis Co Other Beneficial	NA	4	0.01	0.01	0.00	0.01	
Uses - Lewis Co Subbasin Total	1	100	0.37	0.37	0.19	0.19 0.39	
layfield Dam Subbasin							
Mossyrock Small Community Water Systems -	NA	28	0.20	0.20	0.10	0.10	
Lewis Co Domestic Wells -	1	100	0.37	0.37	0.19	0.19	
Lewis Co Other Beneficial	NA	5	0.02	0.01	0.00	0.01	
Uses - Lewis Co	1	100	0.37	0.37	0.19	0.19	
Subbasin Total						0.48	

HOR Lower Columbia Fish Recovery Board Integrated Strategy for Implementing Water Right Reservations

A-13 Project No. 80479 March 2009

			Table I			
V	Vater Right R	eservat	ion Calo	culations for	Water Right Acquisition/ Flow	
	Anticipa No. of ''Blocks'' ⁽²⁾	ded Needs Qa (afy)	Qi (cfs)	Unmitigated Streamflow Depletion Allowance (cfs) ⁽³⁾	Augmentation Offset (Maximum Extent Practicable ⁽¹⁰⁾) (cfs) ⁽⁴⁾	Target Streamflow Depletion Allowance (cfs) ⁽⁵⁾
Small Community Water Systems -						
Lewis Co Small Community	1	100	0.37	0.37	0.19	0.19
Water Systems - Cowlitz Co Small Community	1	100	0.37	0.37	0.19	0.19
Water Systems - Skamania Co Domestic Wells -	1	100	0.37	0.37	0.19	0.19
Lewis Co Domestic Wells -	NA	2	0.01	0.01	0.00	0.01
Cowlitz Co Domestic Wells -	NA	6	0.02	0.01	0.00	0.01
Skamania Co Other Beneficial	NA	0	0.00	0.00	0.00	0.00
Uses - Lewis Co Other Beneficial	1	100	0.37	0.37	0.19	0.19
Uses - Cowlitz Co Other Beneficial Uses - Skamania	1	100	0.37	0.37	0.19	0.19
Co Subbasin Total	1	100	0.37	0.37	0.19	0.19 1.14
oweeman River Subbasi Small Community Water Systems -	in					
Cowlitz Co Domestic Wells -	1	100	0.37	0.37	0.19	0.19
Cowlitz Co Subbasin Total	NA	8	0.03	0.01 0.38	0.00 0.19	0.01 0.20
ower Cowlitz River Subl	basin			0.50	0.17	
Longview	(Not applicabl in tidally influ (Not applicabl	enced area	. ⁽⁹⁾)			
Kelso	in tidally influe (Not applicabl	enced area	. ⁽⁹⁾)			
Cowlitz PUD	in tidally influ					
Castle Rock (7)	NA	NA	2.60	2.60	1.30	1.30
Winlock (7)	NA	NA	0.33	0.33	0.165	0.165
Toledo ⁽⁷⁾	NA	NA	0.47	0.47	0.24	0.24
Vader Small Community	NA 2	0 200	0.00 0.75	0.00 0.75	0.00 0.37	0.00 0.37

	Table I-2aWater Right Reservation Calculations for WRIAs 25/26									
	Anticip	Anticipated Needs (1)			Water Right Acquisition/ Flow Augmentation Offset	Target				
	No. of ''Blocks'' ⁽²⁾	Qa (afy)	Qi (cfs)	Streamflow Depletion Allowance (cfs) ⁽³⁾	(Maximum Extent Practicable ⁽¹⁰⁾) (cfs) ⁽⁴⁾	Streamflow Depletion Allowance (cfs) ⁽⁵⁾				
Water Systems -							_			
Cowlitz Co										
Small Communit	у									
Water Systems -		• • • •			0.05	^ ~ =				
Lewis Co	2	200	0.75	0.75	0.37	0.37				
Domestic Wells			0.01	0.01	0.00	0.04				
Cowlitz Co	NA	6	0.01	0.01	0.00	0.01				
Domestic Wells		_	0.01	0.01	0.00	0.04				
Lewis Co	NA	5	0.01	0.01	0.00	0.01				
Other Beneficial		• • • •	·	- - -		^ 				
Uses - Cowlitz C	lo 2	200	0.75	0.75	0.37	0.37				
Other Beneficial										
Uses - Lewis Co	NA	NA	6.60	6.60	3.30	3.30				
Subbasin Total				12.27		6.135 ⁽⁸	3)			

Notes:

Qa = Annual Allotment; Qi = Instantaneous Quantity; afy = acre-feet per year; cfs = cubic feet per second

Anticipated needs are calculated in the following ways for four different types of water users:

Large Public Water Systems - Needs are based upon deficiencies in existing water rights to meet water demand growth projected to 2020.

Small Community Water Systems - Needs are noted in terms of "blocks" or quantities of water. The number of blocks assigned to each subbasin is based upon the general likelihood of future water demand growth by these types of consumers in that area (e.g., there will likely be more such growth in the Lower Cowlitz River Subbasin, than in the Upper Cowlitz River Subbasin, due to the land use differences in these two subbasins.) Domestic Wells - Needs are based upon estimated growth in the number of domestic wells by 2020. Domestic wells include those serving multiple homes but are exempt from the requirement to apply for a water right permit.

Other Beneficial Uses - Needs are noted in terms of "blocks" or quantities of water, using a similar rationale as applied to Small Community Water Systems, needed to meet water demand growth to 2020.

- (2)1 "block" = 100 afy water right on a Oa basis (or approx. 90,000 gallons per day on an average day basis) = 0.37 cfs water right, on a Qi basis (assuming a maximum day:average day peaking factor of 2.0, and an instantaneous:maximum day peaking factor of 1.33)
- (3) Calculated based upon an estimate of additional water rights needed to meet water demands through 2020. The Unmitigated Streamflow Depletion refers to the total amount of streamflow reduction allowed within the subbasin as a result of pumping or diversion. In some cases, the amount is equal to the anticipated need (Qi). In other cases, the amount is lower, recognizing that a portion or all of the need may be met using groundwater supplies. In these cases, the impacts to streams may be lower than the amount of water withdrawn from the aquifer. For domestic wells, the depletion amount (or potential streamflow impact) is calculated as 30% of the anticipated need, taking into account that an estimated 70% of water pumped from such wells is returned to streamflows via septic system returns.
- (4) Refers to the requirement of water users to offset 50 percent of their future water uses through acquisition of water rights or flow augmentation. Does not apply to Domestic Wells.
- (5) Calculated as the Unmitigated Streamflow Depletion minus the Water Right Acquisition/Flow Augmentation Offset requirement. This allowance applies only to impacts upon mainstem flows; it is not intended to allow for extensive dewatering of smaller water bodies. Water right applicants must provide further evidence

regarding potential impacts to smaller tributary creeks resulting from new or expanded water resource development.

Allowances are to be considered available only for the category to which they are assigned. However, every 5 years, Ecology and local parties should review the status and use of the allowances and may shift allowance quantities between categories to better address needs, so long as the subbasin total allowance does not change.

- ⁽⁶⁾ Current water rights are sufficient to meet needs through year 2020. Therefore no reservation is established.
- ⁽⁷⁾ Revised water demand projections were determined during the 2005/2006 watershed plan remand process, and are not reflected in previous assessments and growth management projections.
- ⁽⁸⁾ The size of reservations in the Upper Cowlitz, Mayfield Dam, and Lower Cowlitz Subbasins are under review by the Planning Unit. These reservations may be increased, recognizing that flows on the mainstem Cowlitz River greatly exceed minimum flows needed for aquatic habitat. For the same reason, mitigation requirements may be reduced to some extent for any new withdrawals affecting the mainstem Cowlitz River.
- ⁽⁹⁾ The sources of water supply used by this purveyor are located within the tidally-influenced portion of the Lower Cowlitz River, which will remain open for new appropriations. Therefore, no water right reservations are required.
- ⁽¹⁰⁾ See pages I-6 and I-7 for a description of off-setting and mitigation actions.

Attachment B

WRIA 27/28 Salmon/Washougal and Lewis Watershed Management Plan Reserved Water Strategy Implementation

Policy Background

The reserved water strategy outlined in the WRIA 27/28 Salmon/Washougal and Lewis Watershed Management Plan (hereafter Plan) is based upon the following policies and goals that are designed to balance the objectives of water supply and stream flow protection:

"Public and private water users throughout WRIAs 27 and 28 should have access to water resources to meet new or expanded needs for water supply consistent with adopted land use plans." (Policy WSP-1, Pg 3-10)

"Water resource development to meet new or expanded needs should avoid or minimize effects on stream flows or aquatic habitat in stream reaches where flow conditions are an important factor for sustaining aquatic life, including fish populations in their various life stages." (Policy WSP-2, Pg 3-10)

"Manage stream flows effectively to sustain aquatic biota, including fish populations in their various life stages." (Objective, Section 1.3, Pg 1-4)

Much of the policy discussion that provides the foundation and rationale for the reserved water concept is found in Section 4.1.1 of the Plan. This discussion emphasizes the need to identify water sources that will not cause significant effects on stream flow or aquatic habitat. As part of the instream flow protection strategy, the Planning Unit recommended Policy SFP-2 (Pg 4-6), which would prohibit issuance of new water rights that would reduce low flows, except under certain pre-defined circumstances. This policy "recognizes that a total closure of streams to all new water right applications would conflict with the goal of ensuring adequate water supplies are available for the region" (Pg 4-3). Therefore the policy has exceptions for the following selected purposes:

- Domestic wells, served by septic systems;
- Specific communities that may not have access to alternative supplies. In these cases a pre-defined quantity of water will be "reserved" for possible allocation to that community. The reserved quantity will be defined in terms of the net effect on stream flow from development of new supply capacity (emphasis added).
- Other communities and industries that may need supplies in the future, but whose needs cannot be well-defined at this time. Again, a pre-defined quantity will be reserved to meet these needs. (Pg 4-3)

The reserved supplies discussed above (except for domestic wells) can be tapped only if the community first demonstrates there is no other practicable alternative, commits to effective stewardship through conservation and/or production of reclaimed water; and commits to offsetting actions and mitigating actions that minimize the effects on stream flow or aquatic habitat. Actions will be evaluated within the context of other supply alternatives, water supply total project cost, and the cost of the off-setting and mitigating actions. The procedure for municipalities to follow when requesting new or expanded water rights is found in Section 3.3.1 (Pg 3-11). Additional discussion and guidance relating to reservations and related mitigation is found in Appendix H (Pg H-2).

Determination of Reservation Quantities

Reservation quantities were established by the Planning Unit based primarily upon the following:

- Anticipated needs for municipalities and other user groups through 2020 (Policy SFP-2, Pg 4-19; Pg 4-20); and
- Recommendations presented by Washington Departments of Fish and Wildlife (WDFW) and Ecology for protection of instream flows (Appendix H, Pg H-25);

Anticipated needs were determined based upon growth projections and estimates associated with the various categories of water users, including large and small public water systems, domestic wells, and other beneficial uses. The forecasts were obtained from purveyor water system plans and other planning documents and were described in terms of average day demand (ADD) and maximum day demands (MDD) expressed in millions of gallons per day. Projected demands were compared to existing water right availability and capacity to determine projected future supply needs.

WDFW and Ecology provided the Planning Unit with recommendations for establishing water right reservations. The rationale for their recommendations is described in an October 4, 2004 memo from WDFW (Pgs H-25 and H-26). To determine acceptable flow reserves, the agencies identified flow quantities that equate to 1-2% reduction in wetted usable area for species of concern during the 90% exceedence flows in September and October. For watersheds where instream flow studies were not conduced, a 1-2% reduction in flow from the 90% exceedence flow during the low flow season was used as a surrogate. Thus the recommendations were based on very low-flow conditions (9 out of 10 days are as wet or wetter for that date). Because of their sensitivity to flow reduction, small streams were not recommended for establishment of reserves.

The final water right reservations reflected in the Plan represent a balance of the above considerations. Section 3.3.1 (Pg 3-13) describes water reservations as follows:

"In order to satisfy the goals associated with the establishment of closures and/or instream flows, and the goals associated with providing a secure source of water for future public water supply, it is recommended that in each basin a block of water be reserved for future

public water supply that would not be subject to the closures and/or instream flows established by rules for WRIAs 27 and 28."

In many cases reservation quantities were consistent with WDFW and Ecology recommendations for instream flow protection. In other cases reservations to meet growth needs were established in areas where none were recommended by state agencies. Several reservations were negotiated during the final plan development and adoption phases based on revised supply need considerations.

Reservation quantities were established and agreed upon based on the understanding that implementing the long-term water supply (e.g., regional source development) and stream flow strategies (e.g., regional source development) should result in improved instream flow conditions. Reservations should thus be viewed as negotiated quantities that are intended to represent an overall balance between instream flow and supply needs, within the context of the long-term strategies for water management and mitigation to offset stream impacts.

Definition of Water Reservation:

Numeric reservations are presented in water right reservation summary tables found in several areas of the Plan:

- Table ES-3 (Pg ES-12)
- Table 4-4 (Pg 4-21)
- Table H-2 (Pgs H-17 and H-18) (attached)
- Table H-2a (Pgs H-19 and H-20) (attached)

Tables ES-3, 4-4 and H-2 all identify the amount of water, the entity, and the sources of water to be reserved for public supply. These tables all refer to the "net stream flow depletion allowance after mitigation (cfs)". Table H-2a includes a "net stream flow depletion after mitigation" column as well, and also includes columns for anticipated needs, stream flow depletion without mitigation, and offset/mitigation requirements, all expressed numerically in cfs. These tables suggest that the "net streamflow depletion allowance after mitigation" column is intended to represent stream flow "reservations".

Policy SFP-2 states that the "rules adopted shall not prevent issuance of water rights for selected purposes and uses" (Pg 4-6 and 4-19). With regard to domestic wells, small community systems, other beneficial uses, and municipal water systems, this policy states that these quantities "represent the net depletion of stream flow in each subbasin…". The discussion of reservations in Section 4.1.1 (Pg 4-3) also states that "the reserved quantity will be defined in terms of the net effect on stream flow from development of new supply capacity." These references and the tables discussed above all confirm that the numeric quantity that constitutes the water right "reservation" is the "net stream flow depletion allowance after mitigation".

Implementation Roles and Responsibilities:

The Plan recognizes that the Department of Ecology is the entity responsible for making water right permit decisions and applying the reservation strategy, and also acknowledges the role of WDFW in evaluating requests for reservation use. Sections 3.3.1 (Pg 3-11 through 3-13) and Appendix H (Pg H-6 and H-7) describe the following roles and responsibilities:

"The Department of Ecology has the responsibility for reviewing water right applications. Under its current process, Ecology issues water right permits only if the proposed use meets the following requirements, in accordance with RCW 90.03.290..." (Section 3.3.1, Pg 3-11)

"The Planning Unit recommends that Ecology (in conjunction with Fish & Wildlife) evaluate requests for reservation use by reviewing the applicant's analysis of other alternatives <u>and</u> by evaluating the applicant's proposal in terms of off-setting and mitigating actions." (Section 3.3.1, Pg 3-12; Appendix H, Pg H-6)

"Application for the reservation will be reviewed, analyzed, and processed by Ecology in consultation by Fish & Wildlife"... (Appendix H, Pg H-6)

These Plan sections affirm the regulatory and decision-making role of Ecology and WDFW in evaluating and processing water right applications under the reserved water strategy, and making determinations regarding adequacy of mitigation.

Water Reservation Accounting

The Plan does not outline a formal accounting process for tracking "debits" and "credits" associated with implementation of the reserved water strategy and mitigation banking. However, successful implementation of the reserved water strategy will require that Ecology, as the primary regulatory entity, establish an accounting system that addresses the various Plan elements.

The Plan identifies several categories of mitigation actions related to the decision making process outlined in Section 3.3.1 and Appendix H. These mitigation actions will be used to determine mitigation "credits" and "debits" related to use of the reservation. In some cases mitigation actions relate to specific steps in the decision-making process (e.g., determination of 50% flow requirement), but in other cases the intended application is broader and not associated with a single step in the evaluation process. The following is a summary of the mitigation action types recognized in the Plan, along with a description of their relationship to the evaluation process:

• "...where an applicant applies for a water right under a reservation, they be required to mitigate the predicted stream flow depletion to the maximum extent practicable through flow-related actions..." (Appendix H, Pg H-6; Section 3.3.1 Pg 3-12)

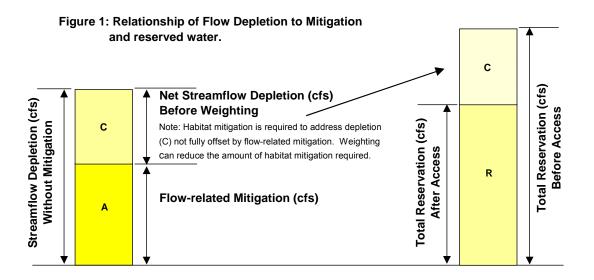
This language is not specific to any particular step in the decision making process and establishes that in developing an overall mitigation package for evaluation, applicants must rely upon flow-related actions to the maximum extent practicable.

• "No less than half of the predicted stream flow depletion (see Table H-2a) must be offset through the acquisition of active upstream water rights or other flow augmenting actions in the same subbasin upstream of the new proposed water right." (Appendix H, Pg H-6; Section 3.3.1 Pg 3-12)

This language establishes the minimum 50% flow mitigation requirement, and establishes that active water right acquisition and other flow augmenting actions can be used to satisfy this requirement. This language refers specifically to the "Offset/Mitigation Requirement" column in Tables H-2a (Appendix H, Pg H-19)

• "In these limited cases, acquisition of offsetting active water rights or flow augmentation actions shall be implemented to the extent feasible. Any remaining offset requirement shall be mitigated through other habitat actions designed to offset the effects of the stream flow depletion not being offset." (Appendix H, Pg H-7; Section 3.3.1, Pg 3 -12)

This language refers to situations when achieving the 50% flow mitigation through acquisition of active water rights and flow augmenting actions is not feasible or is cost-prohibitive. This wording establishes that under the specified circumstances habitat actions can be used to mitigate flow impacts. This language refers specifically to the "Offset/Mitigation Requirement" column in Table H-2a.


• "The Planning Unit recommends that Ecology consider other mitigating actions to address impacts that cannot be practicably off-set (no more than half) through water-for-water actions. This includes actions such as the restoration of wetlands and side-channels that increase stream storage capacity." (Appendix H, Pg H-7; Section 3.3.1, Pg 3-12 and 3-13)

The above language is **distinct and separate from** the previous provisions relating to situations where providing the 50% flow mitigation is not practicable. Given the separation of this discussion from the previous bullet, and the reference to actions that cannot be practicably offset through water-for-water actions, this establishes that habitat actions such as wetland and side-channel restoration can be used to address residual impacts associated with the "Net Stream Flow Depletion Allowance After Mitigation" column in Table H-2 and H-2a.

- "The Planning Unit recommends that Ecology consider habitat restoration actions other than the restoration of wetlands and side-channels using the following criteria:
 - habitat actions should focus upon projects that improve stream conditions impaired by flow (e.g., projects that improve width to depth relationships or improve landscape-level hydrologic processes, etc.);
 - habitat actions should address threats and limiting factors through priority actions identified in the Lower Columbia Salmon Recovery Plan;

habitat actions should be evaluated within the context of when baseflow impacts will occur and the expected timeframe of habitat project benefits. (Section 3.3.1, Pg 3-1; Appendix H, Pg H-7);

This language is also separate and distinct from the previous two bullets, is not associated with a specific step in the mitigation process, and establishes that habitat actions focusing on improving conditions impaired by flow or addressing priority habitat limiting factors can be used to off-set stream impacts. This category can therefore also be used to address impacts associated with the "Net Stream Flow Depletion Allowance After Mitigation" column.

The above graphic represents the relationship between mitigation actions, flow depletion and reservation accounting. The primary approach for mitigating streamflow depletion impacts is through flow-related actions. As described above, the Plan guidance and requirements emphasize that flow related actions must be used to the maximum extent practicable in developing an overall mitigation package. The Plan calls for use of direct water right acquisition or other flow augmenting actions as the primary means to address the "Offset/Mitigation Requirement" (Segment A), with use of habitat actions where this is not feasible. If streamflow depletion is fully mitigated through flow-related actions, the reservation would not be debited and would remain available for future access. However, if impacts are only partially offset or not offset at all through flow-related actions (Figure 1, Segment A), the remaining streamflow depletion (Figure 1, Segment C) is "debited" from the reserve. As depicted in Segment C, habitat actions will also be required to offset net streamflow depletion impacts, but will not be used to reduce the amount of "debit" from the reservation. However, additional instream flow benefits that result in up-weighting of the flow-related mitigation credits can be used to reduce the amount of habitat mitigation required to address net stream flow depletion as represented by Segment C.²

² See Integrated Strategy for Implementing Water Right Reservations, Section 2.0 (Reservation Accounting), for a description of flow-related mitigation up-weighting.

Addressing Water Reservations in Rule:

The WRIA Plan calls for incorporation of water right reservations into State Rules. Specifically, Policy SFP-2 (Pgs 4-6 and 4-19) states the following:

"The Department of Ecology should adopt State Rules (WACs) under its Instream Resources Protection Program to restrict issuance of new water rights in WRIAs 27 and 28. In all affected streams reaches a closure should be established, but with certain exceptions as indicated below".

In addition, the discussion of water reservations in Section 3.3.1 includes the following recommendation:

"In order to satisfy the goals associated with the establishment of closures and/or instream flows, and the goals associated with providing a secure source of water for future public water supply, it is recommended that in each basin a block of water be reserved for future public water supply that would not be subject to the closures and/or instream flows established by rules for WRIAs 27 and 28." (Recommendation, Page 3-13)

Page 3-13 provides further guidance regarding incorporation of water reservations into state rule:

"The amount of water, the entity, and the source(s) of the water to be reserved for public supply is recommended in Appendix H (Table H-2) and should be identified in the proposed rules to be adopted by the Department of Ecology for WRIAs 27 and 28..."

The WRIA 27/28 Plan clearly calls for providing water reservations in rule, and refers to Table H-2 for further defining the content of this rule. As described above, Table H-2 defines the water reservation as "net stream flow depletion allowance after mitigation" (Pg H-17). Based on this, it is clear that the "net streamflow depletion allowance after mitigation" should be included as the "reservation" in rule. However, there are explicit Plan provisions discussed below that will necessitate including in rule exceptions to this definition.

The procedure described in Section 3.3.1 and Appendix H recognizes that "...there may be occasional exceptions where offsetting one half of the predicted stream flow depletion fully or in part may be infeasible or cost-prohibitive". The Kalama River and Upper North Fork Lewis River subbasins were called out as examples of where this situation is thought to exist. The Plan further states:

"In these limited cases, acquisition of offsetting active water rights or flow augmentation actions shall be implemented to the extent feasible. Any remaining offset requirement shall be mitigated through other habitat actions designed to offset the effects of the stream flow depletion not being offset. In no case shall the amount of stream flow depletion from new water rights issued under this policy exceed the quantity shown in Table H-2a, under the column heading "Net Stream flow Depletion Allowance." (Section

3.3.1, Pg 3-12; Appendix H, Section IV, Pg H-6))

Where these exceptions were thought to exist, the "net stream flow depletion allowance after mitigation" column in Tables ES-3, 4-4, H-2 and H-2a, identify the same quantity as the "stream depletion without mitigation" column in Table H-2a. However, the Plan recognizes that other situations may exist, and the intent is to allow mitigation of impacts through a combination of flow actions (to extent feasible), and other habitat actions. If the "net stream flow depletion after mitigation" quantity was calculated assuming a 50% flow offset was possible, but in practice it was not, an applicant would only be entitled to secure 50% of their needed water supply and would not be allowed secure the remainder through mitigation because of the following limitation:

"In no case shall the amount of stream flow depletion from new water rights issued under this policy exceed the quantity shown in Table H-2a, under the column heading "Net Stream flow Depletion Allowance".

The potential result would be inequitable treatment of entities under the Plan and inconsistent application of mitigation provisions. Given that water reservations are defined in the Plan as "the net stream flow depletion after mitigation" as concluded above, it will be important to clearly address the exception in rule. This could be accomplished by including the following in the rule language:

- Footnoting the water reservation tables to refer to the discussion regarding exceptions (Sections 3.3.1 and Appendix H);
- Including Sections 3.3.1 (Pg 3-11 through 3-13) and Appendix H Section IV (Pgs H-6 through H-8); and
- Including both Tables H-2 and H-2a as part of the "reservation strategy", to explicitly describe the sequential relationship between reservations and mitigation and the intent of each column heading, and to ensure that an applicant's ability to secure use of the reservation through mitigation is not precluded.

Attachments: Table H Table H-2a

	ation Summary for WRIAs 27/28
Water User ⁽¹⁾	Net Stream flow Depletion Allowance After Mitigation (cfs) ⁽²⁾
Kalama River Subbasin ⁽⁵⁾	
Kalama	1.92
Small Systems and Domestic Wells	0.35
Subbasin Total	2.26
North Fork Lewis Subbasin	
Cowlitz County Portion	
Small Systems and Domestic Wells	0.26
Clark County Portion	
Small Systems and Domestic Wells	0.49
Skamania County Portion	
Domestic Wells	0.40
Small Systems	0.40
Commercial	$0.21^{(6)}$
Subbasin Total	1.76
East Fork Lewis Subbasin ⁽⁵⁾	
Clark County Portion	
CPU, Battle Ground, and Ridgefield ⁽⁴⁾	2.20
Small Systems and Domestic Wells	0.66
Skamania County Portion	0.00
Small Systems and Domestic Wells	0.00
Subbasin Total	2.85
Salmon Creek Subbasin	2.85
CPU, Battle Ground, and Ridgefield ⁽⁴⁾	0.12
	0.13
Small Systems and Domestic Wells	0.12
Subbasin Total	0.24
Burnt Bridge Creek Subbasin	0.02
Vancouver	0.02
Small Systems and Domestic Wells	0.00
Subbasin Total	0.02
Lacamas Creek Subbasin	
Camas	0.50
CPU	0.30
Small Systems and Domestic Wells	0.36
Subbasin Total	1.16
Washougal River Subbasin ⁽⁵⁾	
Clark County Portion	
Washougal	0.00 (3)
Small Systems and Domestic Wells	0.36
Skamania County Portion	
Small Systems and Domestic Wells	$0.74^{(7)}$
Subbasin Total	1.10
Columbia River Tributaries Subbasin	
Clark County Portion	
Small Systems and Domestic Wells	0.22
Skamania County Portion	0.22
Small Systems and Domestic Wells	0.22
Sman Systems and Domestic wells	0.22

Notes:

Categories of water users include:

Large Public Water Systems, which are listed individually.

Small Systems, which refers to Public Water Systems not listed individually and required to apply for a water rights permit. Domestic Wells, including those serving multiple homes but exempt from the requirement to apply for a water right permit. Other Beneficial Uses, such as self-supplied industrial uses.

(2) Calculated based upon an estimate of additional water rights needed to meet water demands through 2020. Incorporates the effects of offsetting and mitigation activities. The allowance applies only to mainstem flows; it is not intended to allow for extensive dewatering of smaller water bodies.

⁽³⁾ Current water rights are sufficient to meet needs through year 2020. Therefore no reservation is established.

- ⁽⁴⁾ Wells serving CPU, Battle Ground, and Ridgefield may draw partly from the East Fork Lewis River Subbasin and partly from the Salmon Creek Subbasin. Therefore, the stream flow depletion is split between these subbasins, based on information provided by CPU.
- ⁽⁵⁾ In the lower reaches of this subbasin, there may be opportunity to increase reservation amounts, pending further study to refine understanding of flow impacts.
- ⁽⁶⁾ Withdrawal impacts shall be limited to the mainstem North Fork Lewis River above Swift Reservoir only.
- ⁽⁷⁾ During future plan review, the size of this reservation will be reconsidered in light of Skamania County's request for 1.15 cfs needed to accommodate approximately 3109 homes.

	Table H-2a							
Water Right	Reservation			for WRIAs 2	27/28			
	Anticipat No. of ''Blocks'' ⁽²⁾	ed Need Qa (afy)	Qi (cfs)	Stream flow Depletion Without Mitigation (cfs) ⁽³⁾	Offset/ Mitigation Requirement (cfs) ⁽⁴⁾	Net Stream flow Depletion After Mitigation (cfs) ⁽⁵⁾		
Kalama River Subbasin ⁽⁹⁾								
Kalama	NA	290	3.83	1.92	0.00	1.92		
Small Community Water Systems -								
Cowlitz Co.	1	100	0.37	0.37	0.19	0.19		
Domestic Wells - Cowlitz Co.	NA	141	0.52	0.16	0.00	0.16		
Subbasin Total						2.26		
North Fork Lewis River Subbasin Small Community Water Systems - Cowlitz Co. Small Community Water Systems - Clark Co.	1	100 200	0.37 0.75	0.37 0.75	0.19 0.37	0.19 0.37		
Small Community Water Systems -	2	200	0.75	0.75	0.37	0.57		
Skamania Co. ⁽¹⁰⁾	NA	NA	NA	0.40	0.00	0.40		
Domestic Wells - Cowlitz Co.	NA	61	0.22	0.07	0.00	0.07		
Domestic Wells - Clark Co.	NA	105	0.39	0.12	0.00	0.12		
Domestic Wells - Skamania Co. ⁽¹⁰⁾	NA	NA	NA	0.40	0.00	0.40		
Commercial - Skamania County ^{(10) (12)}	NA	NA	NA	0.21	0.00	0.21		
Ridgefield	(Not applicable	e due to	location i	n tidally influen	ced area ⁽⁸⁾	Į.		
Subbasin Total	(ittor upplicable		iocution i			1.76		
East Fork Lewis River Subbasin ⁽⁹⁾		5,00						
CPU, Battle Ground and Ridgefield ⁽⁶⁾ Small Community Water Systems -	NA	0	15.00	4.40	2.20	2.20		
Clark Co. Small Community Water Systems -	1	100	0.37	0.37	0.19	0.19		
Skamania Co.	0	0	0.00	0.00	0.00	0.00		
Domestic Wells - Clark Co.	NA	421	1.55	0.47	0.00	0.47		
Domestic Wells - Skamania Co.	NA	15	0.05	0.02	0.00	TBD		
Subbasin Total						2.85		
Salmon Creek Subbasin		1.05						
CPU, Battle Ground and Ridgefield ⁽⁶⁾ Small Community Water Systems -	NA	1,05 0	2.45	0.25	0.13	0.13		
Clark Co.	0	0	0.00	0.00	0.00	0.00		
Domestic Wells - Clark Co.	NA	105	0.39	0.12	0.00	0.00		
Subbasin Total						0.24		

Table H-2a (cont.) Water Right Reservation Calculations for WRIAs 27/28						
Water Right	Anticipat				Net Stream	
	No. of ''Blocks'' ⁽²⁾	Qa (afy)	Qi (cfs)	Stream flow Depletion Without Mitigation (cfs) ⁽³⁾	Offset/ Mitigation Requirement (cfs) ⁽⁴⁾	flow Depletion After Mitigation (cfs) ⁽⁵⁾
Burnt Bridge Creek Subbasin						
Vancouver						0.02
Small Community Water Systems -	0	0	0.00	0.00	0.00	0.00
Clark Co.	0	0	0.00	0.00	0.00	0.00
Domestic Wells - Clark Co.	NA	NA	NA	0.00	0.00	0.00
Subbasin Total						0.02
Lacamas Creek Subbasin		3,24				
Camas ⁽⁷⁾	NA	0	6.01	1.00	0.50	0.50
		1,97	0101	1.00	0.00	0.00
Clark Public Utilities (CPU)	NA	3	3.63	0.60	0.30	0.30
Small Community Water Systems -						
Clark Co.	1	100	0.37	0.37	0.19	0.19
Domestic Wells - Clark Co.	NA	158	0.58	0.17	0.00	0.17
Subbasin Total						1.16
Washougal River Subbasin ⁽⁹⁾						
Washougal	NA	0	0.00	0.00	0.00	0.00
Small Community Water Systems -	1	100	0.27	0.27	0.10	0.10
Clark Co. Small Community Water Systems	1	100	0.37	0.37	0.19	0.19
Small Community Water Systems - Skamania Co. ⁽¹⁰⁾⁽¹¹⁾	NA	NA	NA	0.20	0.10	0.10
Domestic Wells - Clark Co.	NA	158	0.58	0.17	0.00	0.10
Domestic Wells - Skamania Co. ⁽¹⁰⁾⁽¹¹⁾	NA	NA	NA	0.64	0.00	0.64
Subbasin Total	1477		11/1	0.04	0.00	0.04 1.10
Columbia River Tributaries Subbasin						1.10
Small Community Water Systems -						
Clark Co.	0.55	55	0.21	0.21	0.10	0.10
Small Community Water Systems -						
Skamania Co.	0.55	55	0.21	0.21	0.10	0.10
Domestic Wells - Clark Co.	NA	105	0.39	0.12	0.00	0.12
Domestic Wells - Skamania Co.	NA	25	0.08	0.12	0.00	0.12
Subbasin Total						0.44

Table H-2a (cont.)							
Water Right				s for WRIAs	27/28	NAG	
	Antic No. of ''Block s'' ⁽²⁾	Qa (afy)	Qi (cfs)	Stream flow Depletion Without Mitigation (cfs) ⁽³⁾	Offset/ Mitigation Requirement (cfs) ⁽⁴⁾	Net Stream flow Depletion After Mitigation (cfs) ⁽⁵⁾	
Burnt Bridge Creek Subbasin Vancouver Small Community Water Systems - Clark Co. Domestic Wells - Clark Co.	0 NA	0 NA	0.00 NA	0.00 0.00	0.00 0.00	0.02 0.00 0.00	
Subbasin Total						0.02	
Lacamas Creek Subbasin							
Camas ⁽⁷⁾ Clark Public Utilities (CPU) Small Community Water Systems -	NA NA	3,240 1,973	6.01 3.63	1.00 0.60	0.50 0.30	0.50 0.30	
Clark Co. Domestic Wells - Clark Co. Subbasin Total	1 NA	100 158	0.37 0.58	0.37 0.17	0.19 0.00	0.19 0.17 1.16	
Washougal River Subbasin ⁽⁹⁾ Washougal Small Community Water Systems -	NA	0	0.00	0.00	0.00	0.00	
Clark Co. Small Community Water Systems -	1	100	0.37	0.37	0.19	0.19	
Skamania Co. ⁽¹⁰⁾⁽¹¹⁾ Domestic Wells - Clark Co.	NA NA	NA 158	NA 0.58	0.20 0.17	0.10 0.00	0.10 0.17	
Domestic Wells - Skamania Co. ⁽¹⁰⁾⁽¹¹⁾ Subbasin Total	NA	NA	NA	0.64	0.00	0.64 1.10	
Columbia River Tributaries Subbasin Small Community Water Systems - Clark Co.	0.55	55	0.21	0.21	0.10	0.10	
Small Community Water Systems - Skamania Co. Domestic Wells - Clark Co.	0.55 NA	55 105	0.21 0.39	0.21 0.12	0.10 0.00	0.10 0.12	
Domestic Wells - Skamania Co. Subbasin Total	NA	25	0.08	0.12	0.00	0.12 0.44	

Notes:

Qa = Annual Allotment; Qi = Instantaneous Quantity; afy = acre-feet per year; cfs = cubic feet per second; NA = Not Applicable (1)

Anticipated needs are calculated in the following ways for three different types of water users:

Large Public Water Systems - Needs are based upon deficiencies in existing water rights to meet water demand growth projected to 2020 (except Kalama - 50 year need was used).

Small Community Water Systems - Needs are noted in terms of "blocks" of water. The number of blocks assigned to each subbasin is based upon the general likelihood of future water demand growth by these types of consumers in that area (e.g., there will likely be more such growth in the Washougal River Subbasin than in the Burnt Bridge Creek Subbasin, due to the ability of larger purveyors to meet future needs in the latter.)

Domestic Wells - Needs are based upon estimated growth in the number of domestic wells by 2020.

⁽²⁾ "1 ""block"" = 100 afy water right on a Qa basis (or approx. 90,000 gallons per day on an average day basis)

= 0.37 cfs water right, on a Qi basis (assuming a maximum day:average day peaking factor of 2.0, and an instantaneous:maximum day peaking factor of 1.33)"

- (3) The Stream flow Depletion without Mitigation refers to the total amount of stream flow reduction that would occur within the subbasin as a result of pumping or diversion, if there were no mitigation offset. In some cases, this quantity is equal to the anticipated need (Qi). In other cases, this quantity is lower, recognizing that a portion or all of the need may be met using groundwater supplies. In these cases, the impacts to streams may be lower than the amount of water withdrawn from the aquifer. For domestic wells, the depletion amount is calculated as 30% of the anticipated need, taking into account that an estimated 70% of water pumped from such wells is returned to stream flows via septic system returns.
- ⁽⁴⁾ Refers to the requirement of water users to offset 50 percent of their future water uses that are guaranteed within the context of this reservation. Does not apply to Domestic Wells.
- (5) Calculated as the Stream flow Depletion minus the Offset/Mitigation Requirement. This allowance applies only to impacts upon mainstem flows; it is not intended to allow for extensive dewatering of smaller water bodies. Water right applicants must provide further evidence regarding potential impacts to smaller tributary creeks resulting from new or expanded water resource development. Allowances are to be considered available only for the category to which they are assigned. However, every 10 years, Ecology and local parties should review the status and use of the allowances and may shift allowance quantities between categories to better address needs, so long as the subbasin total allowance does not change.
- ⁽⁶⁾ Wells serving CPU, Battle Ground and Ridgefield may draw partly from the East Fork Lewis River Subbasin, and partly from the Salmon Creek Subbasin. Therefore the stream flow depletion is split between these subbasins, based on information provided by CPU.
- (7) The majority of the City of Camas is located within the Lacamas Creek Subbasin, though portions are also located within the Burnt Bridge Creek and Washougal River Subbasins. The City's water sources are located within both the Lacamas Creek and Washougal River Subbasins. Therefore, the stream flow depletion for Camas applies to both subbasins (i.e., total stream flows in both subbasins collectively are not to be reduced by more than the amount indicated for the City).
- ⁽⁸⁾ Not applicable, due to location in tidally influenced area.
- ⁽⁹⁾ In the lower reaches of this subbasin, there may be opportunity to increase reservation amounts, pending further study to refine understanding of flow impacts.
- (10) Revised water demand projections were determined during the 2005/2006 watershed plan remand process based on projected build-out in relation to current minimum lot sizes and anticipated growth needs, and are not reflected in previous assessments and growth projections.
- ⁽¹¹⁾ During future plan review, the size of this reservation will be reconsidered in light of Skamania County's request for 1.15 cfs needed to accommodate approximately 3109 homes.
- ⁽¹²⁾ Withdrawal impacts shall be limited to the mainstem North Fork Lewis River above Swift Reservoir only.

Attachment C Alternatives Analysis for New Water Supply

Briefing Material – Water Rights Mitigation Subcommittee

Subject: Alternatives Analysis for New Water Supply

Prepared: March 20, 2008 **Revised:** May 13, 2008

May 13, 2008 May 27, 2008 June 23, 2008 August 11, 2008

Under the WRIA 25/26 and 27/28 Watershed Management Plans, reservations of water are set aside in streams that are otherwise closed to further appropriations. There are several requirements that must be met in order for a water rights applicant to access reserved water from a closed reach of a stream, or to develop a new groundwater source that may deplete a closed reach. One of these requirements is that the applicant must demonstrate to the Department of Ecology that it has considered alternative supplies that would have less impact on the closed stream(s). The reasons for selecting the proposed source of supply should be explained as part of the application for use of reserved waters.

Additional background on this requirement is provided in Section 3 of the Integrated Strategy for Implementing Water Right Reservations. This briefing paper was prepared for use by the Planning Units' Water Rights Mitigation Subcommittee, to further develop guidance for this requirement.

Note: The procedures outlined in this paper do not apply to individual domestic wells, or to applications that do not involve a water reservation defined under State law (Chapters 173-525 through 173-528, Washington Administrative Code – adoption pending).

Background Information from Watershed Management Plans

Section 3.3.1 of the Watershed Management Plans includes the following recommended procedure:

Where...evaluation [of proposed supply projects] indicates that development of the source of supply will impact the flow regime, the Planning Unit recommends that the municipal water supplier analyze alternative options for water supplies. In such cases, supply alternatives include use of a different (most likely deeper) aquifer, purchase of water from a neighboring community, development of a tidally-influenced source...or [for WRIA 27/28 only] purchase of water from a regional water system....

If the supply alternatives analysis indicates that no practicable alternative is available, the water right applicant may petition Ecology to utilize a "reservation" of water....The Planning Unit recommends that Ecology (in conjunction with Fish and Wildlife) evaluate requests for

reservation use by reviewing the applicant's analysis of other alternatives <u>and</u> by evaluating the applicant's proposal in terms of off-setting and mitigating actions.

Following this text, in the Plan's discussion of mitigation actions it states that

Practicable is meant to include both economic and logistic considerations.

The Watershed Management Plans also state that:

Communities receiving new and additional water rights will be required to optimize the use of their new rights, through existing and future conservation requirements....

The purpose of these requirements is to ensure that stream flows in closed reaches are protected from depletion when alternative supplies are available that would meet the same need and result in a smaller flow depletion or no flow depletion. However, water users designated for access to reserved supply should not be denied access if the need can be demonstrated and other sources are not feasible or cost-effective. These provisions balance the objective of providing access to reserved water with the objective of protecting stream flow.

In addition to the procedure outlined in the Watershed Management Plans, the adopted plans also express specific source preferences that were developed by the two Planning Units for their respective areas. These are summarized in Table 1 and should be considered as part of any source alternatives analysis (for specific language, see the Plan documents). Additional information is included at the end of this attachment. Where a source is specifically "endorsed" in the Watershed Management Plans, this indicates it has already been adequately compared with available alternatives. For those sources, further analysis of alternatives is not required under the reservation procedure.

Table 1 Source Preferences from Watershed Management Plans					
Both Planning A	reas				
impacts impacts.					
Columb subject t	water from the Columbia River; ground water in hydraulic continuity with the ia River; or supplies impacting only adjacent, lowland reaches of tributaries o tidal effects are preferred over supplies impacting flow-limited reaches of streams.				
water su instead of currently	ban or suburban developments or industrial facilities requiring new or expanded pplies should generally look first to existing municipal or other water suppliers of developing separate sources of supply (the WRIA 27/28 plan states this is not y applicable to Skamania County because there are no large municipal systems e). This does not apply to agricultural uses.				

WRIA 25/26

- The Cowlitz River is a significant regional resource, and is preferred over other water resources tributary to the Columbia River. However use of the Cowlitz River should be consistent with the reservation quantity established in the Plan.
- The Planning Unit endorsed supply alternatives presented in the Longview-Kelso Urban Area Comprehensive Water Plan (1999). These involve expanded use of the Regional Water Treatment Plant on the Cowlitz River; and/or local groundwater supplies hydraulically connected to the Cowlitz River. Affected systems include the Cities of Longview and Kelso and the Cowlitz County PUD.

WRIA 27/28

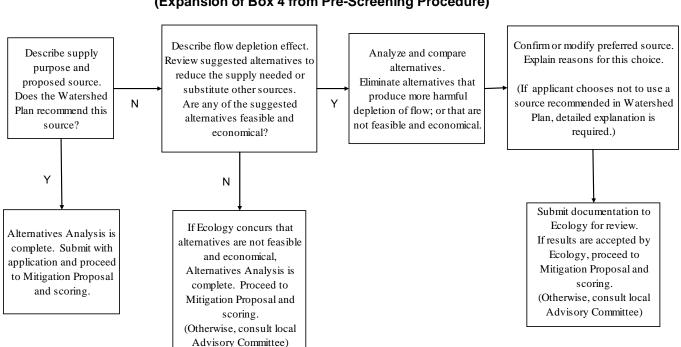
- The Pleistocene Alluvial Aquifer should be developed as a regional source (regional initiatives under way by Vancouver and CPU at Vancouver Lake lowlands; and Camas and Washougal at Steigerwald Lake).
- The tidal reach of the North Fork Lewis River below Woodland was cited as an example of a lowland tributary to the Columbia River that offers a viable source of supply.
- Development of additional wells in the Pioneer area for public water supply were endorsed by the Planning Unit.
- The Planning Unit recommended Ridgefield consider purchasing water from CPU to aid in meeting future demands.
- The Planning Unit supports expansion of withdrawals from a Ranney well on the North Fork Lewis River to meet Woodland's growing needs. Flow in this reach is affected by tidal influence.
- The Planning Unit recommended that Battle Ground purchase water from CPU.
- Increased withdrawals by the City of Kalama from its existing Ranney Well adjacent to the Kalama River were endorsed, up to a limit of 1.92 cfs in additional supply.

Information drawn from WRIA 25/26 Plan, pp. 3-9 to 3-16; and WRIA 27/28 Plan, pp. 3-11 to 3-23. These sections are reproduced at the end of this attachment.

Use of Alternatives Analysis in Other Contexts

In order to support development of the Alternatives Analysis procedure, the Subcommittee reviewed existing procedures used by various agencies or other organizations. This information served as background only. Other procedures were designed for specific needs that differ from the Watershed Management Plan.

Alternatives analyses are widely used for decision-making on public projects. Some examples are:


- Identification and analysis of alternatives is required in preparation of Environmental Impact Statements under the State and National Environmental Policy Acts (SEPA and NEPA). This analysis focuses on environmental effects of different project alternatives.
- The U.S. Army Corps of Engineers "404" permits for filling and dredging include a requirement for analysis of practicable alternatives to minimize environmental damage.

- Washington State Department of Health requires municipal water systems to conduct a "source of supply analysis" if their water system plan indicates a need for new water rights within 20 years. Alternatives that must be considered include enhanced conservation, water right transfers, artificial recharge of groundwater, and use of reclaimed water or other non-potable supplies (for details, see Water System Planning Handbook, DOH, 1997, available online).
- The Oregon Water Resources Department requires alternatives analysis for new municipal water rights (OAR 690-086-0170), focusing on opportunities to meet needs through conservation or interconnections with other suppliers.
- Alternatives analyses and related cost-benefit analyses are also used by public agencies and private companies in decision-making for large project decisions such as major transportation improvements; hydro-electric projects; and flood-control projects.

Standards for the adequacy of alternatives analysis vary widely under these different contexts. Some of the examples listed above have very brief, general requirements; while others have considerable detail required under law.

Proposed Guidelines

All applications for water rights under a water reservation shall be accompanied by answers to the questions on the following pages. The procedure is summarized in Figure 1.

Figure 1 Alternatives Analysis Procedure for Reserved Water Supplies (Expansion of Box 4 from Pre-Screening Procedure)

Questionnaire Alternatives Analysis for New Water Supply

(Applicants must provide written responses to the questions listed below. Applicants can attach materials from adopted water system plan or other existing reports if these provide the information requested. If materials are attached, please reference specific pages, for each question below.)

(Note: this review of alternatives is not designed to meet requirements of the State Environmental Policy Act [SEPA]. However some of the information requested may be useful for SEPA compliance, and vice versa.)

- 1. Describe the purpose of this water supply project. Who will be supplied and for what type(s) of water uses? What quantity of water is requested and how was the quantity determined? Indicate when the applicant expects to fully utilize the new supply (e.g. immediately? Ten years from now? Twenty years?).
- 2. List the source of supply requested and provide a map showing the location where water will be diverted or withdrawn. For ground water sources give the approximate depth of the well or wells.
- 3. What surface waters are expected to experience flow depletion as a result of developing this supply? Where would the depletion be expected to occur? What quantity of depletion is expected, in cubic feet per second? How is this expected to vary seasonally? (note habitat restoration needs indicate special emphasis on the low-flow period in late summer and early fall). What methods were used to determine the expected depletion?
- 4. Would it be feasible and economical to either reduce the need or fully meet the need through any of the following? What quantity could be met through these options? (including combining options, if feasible and economical). If these options are not feasible or economical, please explain why.
 - a. Demand management. Demand management includes metering and analysis of water use patterns; water conservation actions; control of leakage or other water losses; rate structures that provide incentives to manage water use; or other practices to improve efficiency of water uses.
 - b. Reclaimed water. Reclaimed water is wastewater that has been treated to State standards for reuse.
 - c. Water purchased from a water supplier that has excess supply, including a regional supply source.
 - d. Acquisition of an existing supply source and water right from another party.
 - e. Increased storage capacity. (Note: storage may include constructed facilities or storage in natural aquifers underground.)
 - f. Increased treatment capacity for an existing source; or rehabilitation of an existing, but contaminated water source.

g. Other opportunities to optimize existing, developed sources? (either under existing water rights or with new water rights)

Based on these options, explain whether the applicant wishes to proceed with the original quantity of water identified, or a lower quantity.

5. Has the WRIA Planning Unit already formally and specifically endorsed this source of supply for use by this applicant?

(if yes, provide documentation from the appropriate Watershed Management Plan, adopted provisions of State law, Ecology order, or other official designation pursuant to recommendations by the Planning Unit. Further source analysis not required).

- 6. For the remaining need not met by methods listed above, are there any alternative sources of supply that could reasonably substitute for the requested supply source? Consider each of the source categories below.
 - a. Ground water aquifers other than the requested source. (the Watershed Plans especially suggest use of ground water in continuity with the Columbia River or tidally influenced tributaries).
 - b. Surface waters from the Columbia River.
 - c. Surface waters from tidally-influenced reaches of tributaries to the Columbia River.
 - d. Other sources, if applicable.

For each category, if there is no reasonable alternative to the preferred source, explain why. (*In this case, no further analysis is required.*)

If there are one or more reasonable alternatives, identify the specific source (name of surface water; description of aquifer; or similar information). Proceed to the next question.

- 7. For each alternative deemed reasonable for further consideration under Questions 4 and 6 above, provide a brief narrative comparison with the requested source of supply. Consider the following elements:
 - a. Quantity of supply available from the alternative source (or quantity of need reduced through demand management actions).
 - b. Quantity and timing of stream flow depletion in surface waters that have reservations established, and other surface waters that are "closed" to new appropriations.

(For each alternative under consideration, if the stream flow depletion is <u>more</u> harmful to affected waters than that caused by the requested supply, provide documentation. Further analysis of that alternative is not required in order to demonstrate that it should not be implemented.)

- *c*. Other environmental considerations, such as the status and importance of affected species; potential impacts to wetlands; disturbance of intact upland habitat, etc.
- d. Cost and complexity to develop the source. (Considerations of cost should include both capital cost and long-term operational cost).
- e. Cost and complexity of transmission facilities to deliver water to the place of use.
- f. Cost and complexity to treat the source to meet required water quality standards. (If water cannot meet desired quality even with treatment, explain why.)
- g. Reliability of the supply.
- h. Other factors the applicant considers relevant to selecting the appropriate supply.

(The table on the following page can be used to summarize this information, but does not substitute for a more complete, narrative explanation.)

8. As shown in Table 1, the adopted Watershed Management Plans list certain preferred sources of supply. In cases where one of these recommended sources could be used to meet the applicant's needs: if the applicant is applying for a different source instead, provide a detailed explanation of why the applicant prefers that source instead of the one recommended in the Watershed Management Plan. (Note: consider recommended sources from the most recent amendment to the plans, and/or other official designations pursuant to recommendations by the Planning Unit, as applicable).

	Comparison of Source Alternatives (insert brief narrative statements to compare alternatives)							
		StreamDepletion(water bodyEnvironmental	(co	Cost & Complexity (consider capital cost and operational cost)			Other Factors, if	
or describe)		and quantity)	Considerations	Source	Treatment	Transmission		Applicable
Source Alternative 1								
Source Alternative 2								
Source Alternative 3								
Etc. (list all reasonable alternatives)								

Source Preferences from WRIA 25/26 Watershed Management Plan (As Adopted 2006)

Excerpts from Section 3.3 "Water Supply Policy for WRIAs 25 and 26"

pp. 3-9 to 3-10:

Inherent in this strategy is the concept that, apart from tidal reaches and potential limited uses of the Lower Cowlitz River, no new surface water diversions are recommended by the Planning Unit as a form of water provision. In those cases where additional water supplies are needed, ground water development is recommended. [emphasis added]. However, as discussed in Section 3.1.2, ground water has been shown to likely be in communication with surface water in some parts of the basin. This is especially true for withdrawals from shallow wells in proximity to tributary streams. Therefore, priority should be given to ground water supply alternatives that avoid surface water impacts.

Recommendation:

The Planning Unit views the Columbia River and ground water in hydraulic continuity with the Columbia River as a major water resource to meet water supply needs. As new water supplies are needed, it is preferable they be withdrawn from the Columbia River, adjacent lowland reaches of tributaries subject to tidal effects, and associated ground waters, rather than from flow-limited reaches of streams tributary to the Columbia. This approach can meet regional supply needs, while protecting important aquatic habitat in the region.

Recommendation:

The Planning Unit views the Cowlitz River as a significant regional resource. Due to the abundant supply in the mainstem Cowlitz River, the Planning Unit recommends that it be considered over other water resources tributary to the Columbia River in meeting future water supply needs. Use of the Cowlitz River should be consistent with the reservation quantity established for the river (See Section 4.4.1)

р. 3-13

Recommendation:

In general, the Planning Unit recommends that new urban or suburban developments or industrial facilities that require new or expanded water supplies shall seek to obtain water from existing municipal or other water suppliers rather than developing separate sources of supply. (Note: this would not apply to agricultural uses). If an existing municipal supplier or other water supplier is not available, then the new development or industrial facility should follow the procedure described in Section 3.3.1. Options to provide financial incentives and/or technical assistance to large industries for water conservation and water reuse will be explored, where this can be linked directly to protection of stream flows.

Excerpts from Section 3.4: "Water Supply Strategies for Major Municipal Water Providers"

(pp. 3-14 to 3-17)

3.4.1 City of Longview

The City of Longview supplied water to a population of approximately 39,000 people in 2000. The City anticipates serving approximately 47,000 people in 2020, with an average day demand of 10.23 mgd. The City's system serves primarily residential, commercial and industrial customers, including the Port of Longview and Weyerhaeuser Company.

The City diverts water from the Cowlitz River east of the City and provides treatment at the Longview-Kelso Regional Water Treatment Plant (RWTP), which is co-owned with Cowlitz PUD. This source is in the Lower Cowlitz Subbasin. The intake is located in the tidally influenced area of the Cowlitz River (refer to Section 2.4.3). Recent upgrades to the RWTP bring its capacity to 16 mgd. This plant capacity is considered adequate to meet short-term future demands, but would need to be expanded to meet long-term demands. The City also maintains a series of emergency interties with adjoining agencies, including four interties with the Cowlitz PUD and other interties with the City of Kelso. The interties with the Cowlitz PUD only benefit distribution of water; they do not provide additional supply since both utilities obtain water from the same source. The interties with Kelso provide for limited, emergency service and are not utilized as part of regular supply service to City customers.

The City of Longview, on behalf of itself and Cowlitz PUD, was granted additional annual water rights under their existing permit. Currently water rights amount to 50 cfs (32.2 mgd) instantaneous rights and 14,629 acre-feet per year (13.06 mgd), which increased from 8,904 acre-feet per year. The action came as a result of the planned construction of a gas-fired electric generation facility. Here, the planned industrial owner sought to expedite the state's review of its pending water right application. In order to do so, it agreed to pay the Department of Ecology for the necessary review services to examine its own application(s) and all prior pending applications, including those of the City of Longview (for the RWTP) and the City of Kelso. In this process, the three major water suppliers were granted access to additional water. The resulting rights authorized to the City of Longview (for the RWTP), along with its previous rights, are considered adequate to meet its (and Cowlitz PUD's) 20-year planning period demands.

Based on the Comprehensive Water Plan (1999), future upgrades will be required to bring the facility's capacity up to 28.5 mgd in order to meet year 2020 demands. The City's water rights are adequate to meet the future demands and necessary upgrades to the RWTP. The City through the Comprehensive Plan has identified three major modifications (upgrades) for the RWTP. The schedule for the remaining upgrades depends on the selected regional treatment alternative. These alternatives include:

- 1. New Kelso Ground Water Source: (i) all future water demand for both Longview and the Cowlitz PUD would be through expansion of the RWTP, which would provide water only to Longview and Cowlitz PUD; (ii) existing Kelso WTP would convert to a surface water treatment plant and would maintain its current capacity; and (iii) new ground water wells would be installed in South Kelso along with associated treatment plant(s) as necessary.
- 2. Kelso Participates in Longview RWTP: (i) existing Kelso WTP would convert to a surface water treatment plant and would maintain its current capacity; and (ii) All future demand for Longview, Cowlitz PUD, and Kelso would be met through expansion of the RWTP.

Recommendation:

Expansion of the Regional Water Treatment Plant. The Planning Unit endorses the two alternatives presented in the Longview-Kelso Urban Area Comprehensive Water Plan (1999) to meet the area's future water demands. Both alternatives involve expansion of the RWTP to meet the future demands of Longview and the Cowlitz PUD. The future demands of Kelso would also be met by the RWTP under one alternative, while such demands would be met by new ground water wells under the other alternative. The City of Longview currently has the necessary water rights to meet its demand and RWTP expansion. Furthermore, the RWTP intake is low in the Cowlitz River basin and is within the zone of tidal influence. The additional diversions planned by the City are not expected to negatively impact habitat and other instream needs, as long as plans are consistent with the approach described in Section 3.3.1.

3.4.2 City of Kelso

The City of Kelso supplied water to a population of approximately 13,000 people in 2000. Kelso anticipates serving 18,500 people in 2020, with an average day demand of 5.54 mgd.

The existing supply for the City of Kelso is derived from a Ranney well, which is hydraulically connected to the Cowlitz River. This source is in the Lower Cowlitz Subbasin. The City's current treatment facility has a capacity of 3.6 mgd and is being upgraded to meet state requirements for pH and iron control. The resulting modifications will likely result in a minor increase in capacity. The City's system is also connected to the City of Longview via emergency interties.

As described in Section 3.4.1, the City of Kelso is investigating options for expanding its long-term access to water through installation of new ground water wells and potential construction of ground water treatment facility. Kelso has installed a test well near SR 4 and the Cowlitz River. Analysis results indicate that sufficient groundwater of good quality is available at that location (Robinson and Noble 1998).

The decision on whether to develop the ground water wells will be made in conjunction with the City of Longview and Cowlitz PUD. However, in either alternative, the existing

Kelso WTP would convert to a surface water treatment plant that will comply with new federal requirements. The plant capacity would stay the same.

Recommendations:

Development of Ground Water Wells. The Planning Unit endorses the alternatives presented in the Longview-Kelso Urban Area Comprehensive Water Plan (1999) to meet the area's future water demands. Both alternatives involve expansion of the RWTP to meet the future demands of Longview and the Cowlitz PUD. The future demands of Kelso would also be met by the RWTP under one alternative, while such demands would be met by new ground water wells under the other alternative. Should new wells be developed, they may be hydraulically connected to the Cowlitz River like the existing Ranney well. However, they would be located low in the Cowlitz River basin and within the zone of tidal influence. The additional ground water wells planned by the City are not expected to negatively impact habitat and other instream needs, as long as plans are consistent with the policies developed in this watershed plan.

Expansion of Regional Water Treatment Plant. The Planning Unit also supports the City of Kelso's second alternative to participate in the expansion of the RWTP. See Section 3.4.1.

3.4.3 Cowlitz PUD

Cowlitz PUD supplied water to a population of approximately 9,000 people in the Longview-Kelso area in 2000. The PUD anticipates serving approximately 15,000 people in 2020, with an average day demand of 1.52 mgd. The service area of the PUD includes some customers within the City of Longview. The PUD primarily provides water to both residential and commercial customers – the largest of which is a portion of a local golf course where the primary end use is for irrigation. No industrial facilities are supplied by the Cowlitz PUD.

As discussed above, the PUD has joint ownership in the RWTP, which takes its water from the Cowlitz River. This source is in the Lower Cowlitz Subbasin. The PUD also maintains a series of interties with the City of Longview that benefit the distribution of water but do not provide additional supply since both utilities obtain water from the same source. The PUD also maintains its own standby well for backup and redundancy at Woodbrook in the Ostrander area for use in case of a failure of the underground river crossing to Ostrander. Use of the well is very infrequent.

The same recommendations for the Cowlitz PUD are applied as those for the City of Longview, since the two entities share the same source of supply and coordinate planning.

Excerpts from Section 3.5: "Water Supply Strategies for Other Types of Water Users"

Note: the plan provides discussion of smaller water systems, including several specific systems, on pp. 3-17 to 3-20. However the Planning Unit did not provide specific

recommendations on new sources of supply for these communities, other than to follow the general procedure outlined for all systems in Section 3.3.

p. 3-21 Domestic Wells

Recommendations:

County and city policies provide an adequate means to help off-set impacts caused by exempt wells.

In areas where exempt well use densities may adversely affect local flows, suburban and rural developments should utilize municipal or existing water sources over individual well sources, to the extent permissible by State law. If this is not possible, sources should be developed from deep aquifers.

Land use densities in flow sensitive areas, such as small tributaries, should not be increased.

p. 3-23 Self-Supplied Industrial Water Users

Recommendations:

Conservation and reuse. The Planning Unit places an emphasis upon water conservation and reuse with respect to industries with large water demands. Ecology should develop technical assistance and funding opportunities focused specifically upon the needs of self-supplied industries, to aid in reducing current water demands.

Future water demands. Where feasible, industries requiring additional sources of supply in the future should connect to existing municipal water supplies. Where not feasible due to technical issues or cost, then it is recommended that the industry evaluate alternative sources as described in Section 3.3.1.

Consider the feasibility of non-potable supply. The Planning Unit recommends that large self-supplied industrial water users evaluate development of Columbia River non-potable supplies. The Planning Unit commits to aiding industries in identifying and obtaining funding sources for implementation of such a project, most likely through programs administered by Ecology and DOH (see recommendation in Section 7.3).

p. 3-24 Agricultural Water Users

Recommendations:

New surface water supplies. In those cases where surface water supplies are requested for agricultural purposes, it is recommended that a review of alternative sources of supply be conducted (see Section 3.3.1) to address potential impacts on stream flow.

New ground water supplies. The Planning Unit recommends that Ecology grant water right requests pertaining to future agricultural ground water demand, subject to consistency with the Planning Unit's water supply policy and successful completion of Ecology's water right application review process.

Source Preferences from Chapter 3 of WRIA 27/28 Watershed Management Plan (As Adopted 2006)

Excerpts from Section 3.3 "Water Supply Policy for WRIAs 27 and 28"

p. 3-11

Inherent in this strategy is the concept that ground water is preferred over surface water as a source of new water supplies [emphasis added]. The Planning Unit recommends new or expanded surface water diversions be discouraged, except in limited cases where there is no feasible or cost-effective alternative. In those cases where additional water supplies are needed, ground water development is recommended. However, as discussed in Section 3.1.2, ground water has been shown to be in communication with surface water in some parts of the basin. This is especially true for withdrawals from shallow wells in proximity to tributary streams. Therefore, priority should be given to ground water supply alternatives for which surface water impacts are avoided.

p. 3-14 Regional Water Supply Options

WRIAs 27 and 28 residents are blessed by an opportunity that simply is not available in most regions of the Northwest—the presence of a significant source of water in the Pleistocene Alluvial Aquifer in the Vancouver Lake lowlands. While there are outstanding issues associated with the source development, these issues seem relatively minor compared to the benefit of having a water source of this magnitude located precisely in one of the fastest growing areas of the state. In real terms, this source can be substituted for new and current water supplies that impact stream flows in the East Fork Lewis and Salmon Creek. It could also service emerging needs as far east as the Washougal basin.

Clark Public Utilities (CPU) and the City of Vancouver (Vancouver) are both researching the feasibility of new ground water sources in the Pleistocene Alluvial aquifer in the Vancouver Lake area. Based upon preliminary evaluations, these supplies appear to be sufficient to meet both suppliers' long-term needs, as well as other needs in adjacent areas of WRIAs 27 and 28, without impacting stream flows.

p. 3-15

CPU has a well-established transmission and distribution network throughout a significant portion of Clark County, including interties with some communities (e.g., Battle Ground, Ridgefield, and Vancouver). CPU is well poised to provide water to many users. CPU does not have a significant presence, however, in southeast Clark County near the Cities of Camas and Washougal. To provide service to this area would require the construction of five to ten miles of transmission mains and new pumping facilities. A more logical choice for a regional supply for that portion of WRIA 28 may be a wellfield located in that area. The Cities of Camas and Washougal are initiating efforts to develop wellfield supplies from the Pleistocene Alluvial Aquifer near the Steigerwald Wildlife Refuge. Test wells are planned for some time in 2005/2006. This area may be capable of meeting the long-term needs of both Camas and Washougal without reliance on a Vancouver Lake lowland source.

Both of these regional supply options are highly recommended for evaluation by some communities, as specifically discussed in Section 3.4. Ultimately, both source areas (Vancouver Lake and Camas/Washougal) could be intertied to provide redundancy and greater flexibility to meet emerging growth needs.

Recommendation:

The Planning Unit views the Columbia River and ground water in hydraulic continuity with the Columbia River as a major water resource to meet water supply needs. As new water supplies are needed, it is preferable they be withdrawn from the Columbia River, adjacent lowland reaches of tributaries subject to tidal effects, and/or associated ground waters, rather than from flow-limited reaches of streams tributary to the Columbia. This approach can meet regional supply needs, while protecting important aquatic habitat in the region.

The tidal reach of the mainstem Lewis River (i.e., the North Fork Lewis River below Woodland) is an example of a source described by the above recommendation.

p. 3-16 New Developments and Industrial Suppliers

Recommendation:

In general, the Planning Unit recommends that new urban or suburban developments or industrial facilities that require new or expanded water supplies shall seek to obtain water from existing municipal or other water suppliers rather than developing separate sources of supply. (Note: this would not apply to agricultural uses). If an existing municipal supplier or other water supplier is not available, then the new development or industrial facility should explore water supply sources that are not in hydraulic continuity with surface water or explore the feasibility of developing tidal and/or Columbia River sources. If none of these options are available, Ecology may consider issuing water rights that entirely off-set the net impact to stream flow.

There are currently no large municipal water systems in Skamania County. Therefore the recommendation above has little applicability in Skamania County at this time. This could change in the future, if growth leads to creation of larger public water systems in Skamania County.

Options to provide financial incentives and/or technical assistance to large industries for water conservation and water reuse will be explored, where this can be linked directly to protection of stream flows.

Excerpts from Section 3.4: "Water Supply Strategies for Major Municipal Water Providers"

(pp. 3-17 to 3-24)

3.4.1 City of Vancouver

The City of Vancouver supplied water to a population of approximately 194,000 people in 2000, or roughly 60 percent of the total Clark County population. The City anticipates serving approximately 261,000 people in 2020, with an average day demand of 33.50 mgd.

The City's sources of supply are comprised of 41 wells located at 11 water stations throughout the City. These water stations are located in the Burnt Bridge Creek subbasin. Some water stations are in the drainage area of Burnt Bridge Creek itself, while others are located in other portions of the subbasin that drain to the Columbia River. Based on the City's understanding of local aquifer relationships, most of these water stations draw from aquifers that are not in direct hydraulic continuity with Burnt Bridge Creek.

The City may, from time to time, submit applications for new water rights, transfers, or changes to existing rights for the City's water stations. As described above, such rights apply primarily to sources located outside of the Burnt Bridge Creek drainage in areas not subject to restrictions of water rights issuance according to the policies and recommendations set forth in Section 4.

The City has identified as its primary supply option for meeting future needs the development of a wellfield to the west of Vancouver Lake, in the Columbia River Alluvium. Based upon studies that have shown this aquifer to be quite productive, it is envisioned that this source would be used to supply all demands associated with growth beyond approximately 2010, the time when reliable supplies are anticipated to be fully utilized. This new supply would also provide an additional level of redundancy to the existing system, allowing the use of other sources to be reduced if warranted in the future. Future restrictions to water rights issuance (i.e., closures) are not intended to apply to the Vancouver Lake lowlands area (See Section 4.4.1).

Recommendation:

Development of Vancouver Lake Wellfield. The Planning Unit endorses the City's plan to develop a new wellfield near Vancouver Lake.

Permitting agencies should make every effort to facilitate the development of the Pleistocene Alluvial Aquifer and encourage its use over other sources.

3.4.2 Clark Public Utilities

Clark Public Utilities (CPU) supplied water to a population of approximately 77,000 people in 2000, or roughly 20 percent of the total Clark County population. CPU anticipates serving 113,355 people in 2020, with an average day demand of 14.19 mgd.

CPU's sources of supply consist of 33 ground water wells located throughout CPU's service area. CPU's average daily demand will likely exceed the utility's primary annual water rights by year 2006. Forecast maximum day demands are expected to exceed CPU's total instantaneous water rights by 2020. CPU's water supply strategy for the future involves the development of additional wells in the Pioneer area, adjacent to high-growth areas, and development of a regional wellfield immediately southeast of Vancouver Lake. Based upon studies that have shown this aquifer to be quite productive, the Vancouver Lake wellfield is envisioned to support the majority of CPU's future growth. After the Vancouver Lake lowland wellfield is operational, supply wells in the upland areas will continue to be used to meet peak demands and for emergency backup purposes, as long as mitigation requirements continue to be met.

In addition to focusing upon these new supplies, CPU has also directed substantial resources at the management of existing supplies. Acknowledging the need to manage the water resources of the Salmon Creek Basin, in which many of CPU's sources are located, the utility has entered into a joint agreement with Ecology and Clark County. As a part of this agreement, a Water Resource Plan was developed, outlining a management strategy for this area. CPU is committed to maintaining an effective management strategy for the Salmon Creek Basin.

Recommendations:

Pioneer Area Wells. The Planning Unit endorses the development of additional wells in the Pioneer area to serve as a public water supply. The supply is subject to off-setting and habitat mitigating measures outlined in Section 3.3.1.

Vancouver Lake Wellfield. The Planning Unit endorses the development of the Vancouver Lake wellfield. CPU should consider sale of water from this supply source to other purveyors throughout Clark County, for use in meeting future demands.

Permitting agencies should make every effort to facilitate the development of the Pleistocene Alluvial Aquifer and encourage its use over other sources.

Salmon Creek. The Planning Unit endorses CPU's current efforts regarding management of the Salmon Creek Basin.

3.4.3 City of Camas

The City of Camas supplied water to a population of approximately 12,500 people in Clark County in 2000. The City anticipates serving 30,859 people in 2020, with an average day demand of 8.51 mgd.

The City's sources of supply are comprised of nine ground water wells and two surface water sources. The two surface water sources are Jones and Boulder Creeks, which have

been providing the City with water since the early 1900's. The City relies primarily upon its ground water supplies, with surface water accounting for about one-third of total production. Three emergency interties with the City of Washougal provide additional supply reliability for the City.

The City's average daily demand will likely exceed the City's primary annual water rights by year 2006. This situation may occur sooner, if industrial growth happens at a quicker pace than anticipated. Recognizing its need for additional water supply in the future, the City has identified various supply options, including maximizing the capacities of existing sources and water rights, development of new wells, joint supply development with the City of Washougal, and development of a non-potable Columbia River supply for industrial and irrigation uses.

Recommendations:

Perform a review of alternative sources of supply to replace surface water sources. Due to the impacts upon stream flows in Boulder and Jones Creeks of the City's surface water diversions, Camas should undertake a review of alternative sources of supply, similar to that discussed in Section 3.3.1. The City's existing plans for new ground water development near the Washougal River should be considered in this process, if the new wells are anticipated to not have negative impacts upon the river. If new water rights are secured by the City, the Jones and Boulder Creek sources should be retired, or used during periods of high flow only, as a condition of the new water right. This is a Planning Unit recommendation for voluntary action. Implementation should not be mandated by the State.

Further evaluate feasibility of non-potable supply. The Planning Unit recommends that the City re-evaluate development of a non-potable Columbia River supply, considering the substantial amount of water used for industrial purposes in the City. The Planning Unit commits to aiding the City in identifying and obtaining funding sources for implementation of such a project, most likely through programs administered by Ecology and DOH (see Recommendation in Section 8.3). This is a Planning Unit recommendation for voluntary action. Implementation should not be mandated by the State.

Consider regional supply options with other public water systems. The Planning Unit recommends that the City evaluate regional supply options such as those discussed in Section 3.3.3. These include the development of a wellfield supply near the Steigerwald Wildlife Refuge or, if other opportunities prove infeasible, the potential purchase of water from Vancouver. This is a Planning Unit recommendation for voluntary action. Implementation should not be mandated by the State.

Assist Georgia Pacific in conservation efforts. The Planning Unit recommends that the City provide technical assistance and financial support to Georgia Pacific in developing water conservation measures that would reduce dependency on surface water from Lacamas Creek and ground water from the lower Washougal River vicinity. Any ground water savings realized through conservation could be available to help meet the City's growth needs. This is a Planning Unit recommendation for voluntary action. Implementation should not be mandated by the State.

3.4.4 City of Battle Ground

The City of Battle Ground supplied water to a population of approximately 9,000 people in Clark County in 2000. The City anticipates serving 29,000 people in 2020, with an average day demand of 3.48 mgd.

The City's sources of supply consist of 8 ground water wells. In addition to these well supplies, the City has three interties with Clark Public Utilities (CPU). These interties are used only in the following situations: 1) for assistance in meeting some peak demands, 2) while the City's wells are out of operation for maintenance, and 3) for emergency purposes.

The City's existing sources of supply and water rights are not adequate to accommodate the significant growth anticipated for its service area. The City has identified the development of additional wells as its primary strategy to meet future needs.

The City has implemented various conservation activities including an increasing block water rate structure and an advertisement campaign.

As part of the watershed planning effort, relationships between surface water and ground water in the East Fork Lewis River subbasin were reviewed (PGG 2003a). This review indicates that Battle Ground's wells in the Upper Troutdale and Sand and Gravel Aquifers likely capture baseflow from both the East Fork and Salmon Creek. Wastewater from the City is conveyed to a treatment plant near the mouth of Salmon Creek. Due to the importance of protecting stream flows in these subbasins, the Planning Unit offers the following recommendations for Battle Ground's water supplies.

Recommendations:

Enhance conservation. Battle Ground should enhance its current conservation efforts, with the goal of reducing the production required of existing wells. This is a Planning Unit recommendation for voluntary action. Implementation should not be mandated by the State.

Perform a review of alternative sources of supply. Due to the potential for withdrawal from the City's existing wells to impact stream flows in the East Fork Lewis River and Salmon Creek, Battle Ground should undertake a review of alternative sources of supply, similar to that discussed in Section 3.3.1. The City's plans for a new well should also be subject to Section 3.3.1. Use of reclaimed water may also be of value. This is a Planning Unit recommendation for voluntary action. Implementation should not be mandated by the State.

Purchase water from Clark Public Utilities. It is likely that new water supplies available to Battle Ground will have hydraulic continuity with the East Fork Lewis and Salmon Creek. Due to the regional significance of the East Fork Lewis to salmon recovery and foreseeable population growth, purchase of water from a CPU regional water source is critical. This is a Planning Unit recommendation for voluntary action. Implementation should not be mandated by the State.

3.4.5 City of Washougal

The City of Washougal supplied water to a population of approximately 9,000 people in Clark County in 2000. The City anticipates serving 17,222 people in 2020, with an average day demand of 2.80 mgd.

The City receives its water supply from 5 wells that withdraw water from the shallow alluvial aquifer upon which the City is located.

Based on current demand projections, the City requires additional sources of supply to meet future needs. The City's current future supply strategy consists of maximizing the use of its existing wells and water rights, as well as installing a new large capacity well in the center of town.

Recommendations:

Development of new well. The City of Washougal should follow procedures outlined in Section 3.3.1 as it relates to the installation of a new well near the center of town.

Consider regional supply options with other public water systems. The Planning Unit recommends that the City consider use of regional sources. These include the development of a wellfield supply near the Steigerwald Wildlife Refuge or, if other opportunities prove infeasible, the potential purchase of water from Vancouver. This is a Planning Unit recommendation for voluntary action. Implementation should not be mandated by the State.

3.4.6 City of Woodland

The City of Woodland supplied water to a population of approximately 4,000 people in Cowlitz and Clark Counties in 2000. The City anticipates serving 6,933 people in 2020, with an average day demand of 1.28 mgd.

The City's single source of supply is a Ranney Well collector that withdraws water adjacent to the Lewis River. Similar to the City of Kalama, the Ranney Well collector is shallow and considered to be in direct connection to surface water. However, the Ranney Well is at a low point in the Lewis River watershed and is directly under the influence of tidewater. Therefore, the impacts upon stream flow by City diversions are overshadowed by the larger effects of tidal influence.

Since 1999, the City has operated a filtration/disinfection water treatment plant that addresses Surface Water Treatment Rule (SWTR) requirements as well as reducing aesthetic problems associated with dissolved iron concentrations in the raw water supply.

The City's preferred plan to meet the water demands associated with future development is to expand its use of the Lewis River Ranney Well.

Recommendation:

Increase Ranney Well withdrawals. The City of Woodland's Ranney Well is located within the tidal influence of the North Fork Lewis. The Planning Unit is not recommending protective measures in this reach. The Planning Unit supports expansion of the Ranney Well water supply.

3.4.7 City of Kalama

The City of Kalama supplied water to a population of approximately 3,000 people in 2000. These include residents of the City as well as some unincorporated lands in Cowlitz County adjacent to the City. The City anticipates serving 6,847 people in 2020, with an average day demand of 1.47 mgd.

The City's single source of supply is a Ranney Well collector that withdraws water adjacent to the Kalama River. Similar to the City of Woodland, the Ranney Well collector is shallow and considered to be in direct connection to surface water. However, the Ranney Well is near the downstream end of the Kalama River watershed and impacts upon stream flow by City diversions are relatively small in comparison with flows at this location. The diversion location is slightly upstream of the zone of tidal influence on the river.

A diatomaceous earth water filtration plant provides required water quality treatment. Based on current demand projections, additional supplies may be necessary by 2016. To meet this need, the City is planning to expand its treatment plant capacity by an additional 900 gpm. The City has applied for additional water rights of 1.72 cfs on an instantaneous basis. Average flow on the Kalama River is 314 cfs in August.

Recommendation:

Increase Ranney Well withdrawals. The Planning Unit endorses the City's plans to increase water rights for withdrawal from its Ranney Well of up to an additional 1.92 cfs subject to provisions outlined in Section 3.3.1. The Planning Unit recognizes that the purchase of off-setting water rights is not feasible in the Kalama River, and the 1.92 cfs of additional water rights is not subject to this provision; however, habitat mitigation requirements should be implemented commensurate with flow reduction impacts consistent with Section 3.3.1.

3.4.8 City of Ridgefield

The City of Ridgefield supplied water to a population of approximately 2,000 people in Clark County in 2000. The City anticipates serving 15,000 people in 2020, with an average day demand of 3.70 mgd.

The City's water supply consists of 3 active wells and 2 standby wells located in Abrams Park, near Gee Creek. The City has also recently developed an intertie with Clark Public Utilities on the east side of the City's system. In the near term, this intertie is intended

only to support fire flow needs. However, wholesale purchases from CPU via the intertie are a supply option for the future.

The City will require additional sources of supply to meet future needs. The City's current future supply strategy consists of maximizing the use of its existing wells, as well as installing multiple new wells over the course of the next 12 years.

The City supports the work of the Gee Creek Restoration Committee, efforts of which are guided by the Washington State University (WSU) Cooperative Extension Watershed Stewards Program for the purposes of reducing negative impacts to Gee Creek (e.g., high flows and water quality concerns) due to stormwater runoff.

Recommendations:

Enhance conservation. Ridgefield should enhance its current conservation efforts, with the goal of reducing the production required of existing wells. This is a Planning Unit recommendation for voluntary action. Implementation should not be mandated by the State.

Continued involvement with Gee Creek restoration. The Planning Unit recommends that the City coordinate with the Watershed Stewards Program to identify any actions it may take to aid in the Gee Creek restoration effort. If low flows are identified as an issue needing to be addressed, the City should undertake a review of alternative sources of supply, similar to that discussed in Section 3.3.1. The City's existing plans for new wells should be considered in this exercise, if the new wells are anticipated to have less of an effect upon stream flows than current sources. This is a Planning Unit recommendation for voluntary action. Implementation should not be mandated by the State.

Consider wholesale water purchases from CPU. The Planning Unit recommends that the City consider purchasing water from CPU to aid in meeting future demands, utilizing the recently installed fire flow intertie.

Excerpts from Section 3.5: "Water Supply Strategies for Other Types of Water Users"

pp. 3-24 to 3-27 Small Public Water Systems

Note: the plan provides discussion of smaller water systems, including several specific systems. However the Planning Unit did not provide specific recommendations on new sources of supply for these communities, other than the general recommendation below.

Recommendation:

In those cases where new supplies are required for small Group A systems, it is recommended that a review of alternative sources of supply be conducted (see Section 3.3.1), with an emphasis placed upon evaluating the purchase of water from an existing major water purveyor [emphasis added] (see Section 3.3.3). If new sources are required and a reserved block of water is not available, then the net impact to surface flows should be off-set by acquiring existing upstream water rights.

p. 3-27 Domestic Wells

Note: The plan includes discussion of domestic wells on pp. 3-27 to 3-28. However the Alternatives Analysis procedure does not apply to individual domestic wells.

p. 3-31 Self-supplied Industrial Water Users

Recommendations:

Conservation and reuse. The Planning Unit places an emphasis upon water conservation and reuse with respect to industries with large water demands. Ecology and DOH should develop technical assistance and funding opportunities focused specifically upon the needs of self-supplied industries, to aid in reducing current water demands.

Future water demands. Where feasible, industries requiring additional sources of supply in the future should connect to existing municipal water supplies. Where not feasible due to technical issues, logistics, or cost, then it is recommended that the industry evaluate alternative sources as described in Section 3.3.1.

Consider the feasibility of non-potable supply. The Planning Unit recommends that large, self-supplied industrial water users evaluate development of Columbia River non-potable supplies, similar to that considered by the City of Camas. The Planning Unit commits to aiding industries in identifying and obtaining funding sources for implementation of such a project, most likely through programs administered by Ecology and DOH (see Recommendation in Section 8.3).

p. 3-33 Agricultural Water Users

Recommendations:

New surface water supplies. The Planning Unit does not endorse the use of surface water for meeting additional future agricultural water demand.

Conversion of water rights. The Planning Unit encourages agricultural water right holders to request changes of existing surface water rights to ground water rights not in hydraulic continuity with surface waters. This is a Planning Unit recommendation for voluntary action. Implementation should not be mandated by the State.

New ground water supplies. The Planning Unit recommends that Ecology process water right requests pertaining to future agricultural ground water demand, subject to consistency with the Planning Unit's water supply policy (Section 3.3.1) and successful completion of Ecology's water right application review process.

Attachment D Evaluation of Flow-Related Mitigation

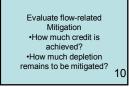
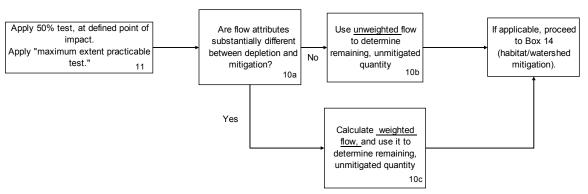
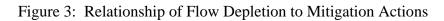
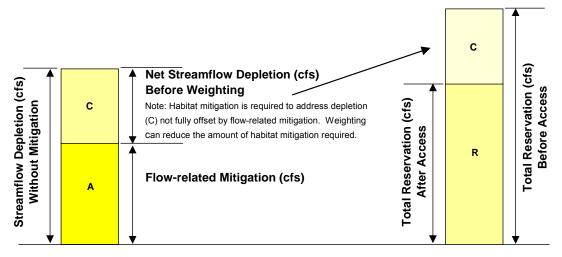


Figure 1: Box 10 from main flowchart

Evaluation of Flow-Related Mitigation (Expansion of Flowchart Boxes 10 & 11)




Figure 2: Expanded flowchart for Flow Related Mitigation


Goal:

- Create a transparent and structured process to evaluate flow-related mitigation proposals
- Enable processing of highly diverse mitigation proposals

Context:

- Applicant must mitigate at least 50% of their flow depletion with flow-related actions (unless this is infeasible or cost-prohibitive)
- Flow-related mitigation must be used "to the maximum extent practicable"
- After mitigation from flow-related actions is credited, applicants must mitigate remaining impacts through habitat/watershed actions (see Figure 3) unless this is infeasible or cost-prohibitive.

(Note: see separate discussion regarding computation of Habitat/Watershed Mitigation Credit)

Assumptions:

- Flow depletion estimates on a stream are quantified based on standard methods currently accepted by Ecology (cost to applicant is a separate discussion)
- For surface water applications, there will be a well-defined "point of diversion" on a surface water body. For ground water applications, a discrete "point of impact" on an affected water body will need to be defined, to enable the steps discussed below. In cases involving more than one pumping or withdrawal location, or variable stream flow capture along a gradient, multiple points of diversion or impact will be established
- Mitigation ordinarily must occur within the same LCFRB-defined subbasin (or for the larger river systems, a subbasin that is hydrologically part of the same larger basin). Limited exceptions may be permissible, where greater benefits can be demonstrated through mitigation in another subbasin.

Approach:

- The plans require that at least 50% of flow depletion be offset with flow-related mitigation. The 50% requirement for flow-related mitigation must be accomplished at the defined point(s) of impact or diversion. For this test, the quantity of flow will be the only metric. However, seasonality will be considered.
- The required flow-related mitigation may be provided in a location other than at the defined point of diversion or impact provided the applicant demonstrates that overall greater resource benefits would result. In these limited exceptions, a quantitative analysis similar to that described in Appendix E must demonstrate overall greater resource benefits as measured by distance (e.g., miles) of watercourse affected, quantity of flow (cfs) benefit and impact relative to baseline habitat conditions, water quality and salmon recovery reach tiering, in both the impacted and benefiting reaches.

- If an applicant cannot meet the 50% requirement, they are permitted to provide evidence to demonstrate achieving 50% using flow-related mitigation is not feasible or is cost-prohibitive. In this case they must provide habitat/watershed mitigation instead.
- The plans also require that applicants mitigate using flow-related actions "to the maximum extent practicable." This means that 50% is not the "ceiling" for flow-related mitigation. In cases where the depletion is not fully offset by flow-related mitigation actions, the applicant must provide a written description of efforts performed to identify feasible actions for flow restoration, and any challenges or obstacles that prevent further use of flow-related mitigation for the application in question. Consistent with the policy in the watershed plans, this explanation may include both economic and logistic considerations.
- If an applicant's flow-related mitigation satisfies the 50% requirement but does not fully offset the impact of withdrawing water, they will be required to mitigate further, using habitat/watershed actions." In order to determine how much mitigation remains to be accomplished, further assessment of the flow-related mitigation action is required, as described in the following steps.
 - A determination will be made whether the flow-related mitigation proposed has similar attributes to the water depleted; or significant differences. If the depletion and mitigation have similar attributes, then the weighting process does not need to be applied.
 - If the depletion and mitigation have substantially different characteristics that affect habitat or other important stream functions, then a weighting process will be applied. The weighting procedure will not affect how much is debited from the reservation. However, it can reduce the amount of habitat/watershed mitigation required. Therefore, if depletion and mitigation have different characteristics, the next step will be to select which attributes are substantially different and should therefore be used in weighting the mitigation proposal. The following attributes will be used to make this determination:
 - Mainstem/tributary relationship (if mitigation will be applied to a different part of the stream network than depletion)
 - Length of stream reaches affected, measured in river miles (to the nearest tenth of a mile)
 - LCFRB reach tiers (these represent fish presence and priority, as well as habitat importance)
 - Seasonality
 - Water quality

A spreadsheet tool has been developed to address the first three of these elements. See Attachment F for further information.

• Once the attributes to be used have been selected from this menu, the approach to weighting is:

- The attributes selected are first weighted in terms of their relative importance. This is done in the "depletion" column. The sum of depletion weights for all attributes selected must equal 100, but the individual weights may be different from each other.
- Next, attention is given to the "mitigation" column. For each attribute, mitigation is scored <u>relative to</u> the depletion effect The mitigation action may receive either a higher weight or a lower weight than the depletion effect. (A mitigation weight higher than the depletion weight means the mitigation action more than offsets the depletion for that attribute; and vice versa). For an example, see Attachment F.
- The "relative value" of the mitigation overall is equal to mitigation weight divided by depletion weight. Credit received for mitigation is the quantity of flow produced by the mitigation action measured in cfs, multiplied by the total relative value of the mitigation action.
- Example : Weighting Factors (only used if depletion effect has substantially different attributes from mitigation action):

In this example, only three attributes (out of five possible) are identified as being "substantially different" between the depletion and the mitigation

	Depletion Weight	Mitigation Weight				
Weighting	(normalized to 100	(assessed relative to				
Factor	total)	Depletion Weight)				
Mainstem/trib	20	40				
relationship						
Length of stream	n/a	n/a				
affected						
LCFRB Tiers	60	80				
Seasonality	n/a	n/a				
Water Quality	20	10				
Total Weight	100	130				
Relative Value	Relative Value 130/100 = 1.3					
of Mitigation:						

Assume depletion quantity = 4.0 cfs and flow-related mitigation quantity = 2.0 cfs. The net depletion is 2.0 cfs and therefore the reservation will be debited by that amount. This is represented by "C" in Figure 3.

However in this example each unit of mitigation is valued higher than each unit of depletion, by a factor of 1.3

So Mitigation Credit is: $1.3 \times 2.0 \text{ cfs} = 2.6 \text{ cfs}$ The additional 0.6 cfs of mitigation credit from weighting reduces the amount of habitat mitigation that is required to address the net streamflow depletion, but does not reduce the total amount (2 cfs) deducted from the reservation.

Therefore the remaining portion not mitigated by flow-related actions is: (4.0 cfs) - (2.6 cfs) = 1.4 cfs. This quantity represents the net habitat mitigation obligation.

- Credit awarded for cases where the depletion and mitigation are on the same exact stream may be different than when the depletion and mitigation are on a mainstem and tributary; or on different tributaries within a sub-basin (see Figure 4). This can be handled through the weighting system discussed above. The "tributary/mainstem" attribute is intended to allow weighting based on this consideration.
- Downstream mitigation. The 50% requirement discussed above must be achieved at the point of impact of the withdrawal. However, it is recognized that some mitigation proposals may include multiple mitigation actions, and some of these may also include downstream, flow-related actions. As long as the 50% requirement is met at the point of impact, additional mitigation actions located downstream of the point of impact will also be considered, and weighted as discussed above.

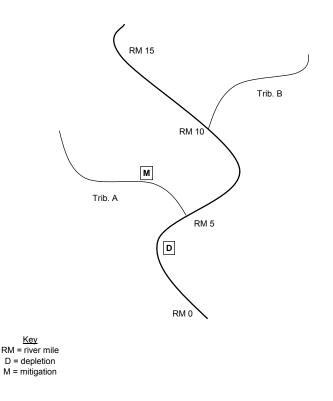


Figure 4: Hypothetical Stream (mainstem & tributaries)

Attachment E Evaluation of Habitat /Watershed Mitigation



Figure 1: Box 14 from Main Flowchart

Executive Summary:

Habitat / Watershed mitigation is required in order to access an instream flow reservation when full mitigation has not been achieved via flow-related means. The goal of this requirement is to "...mitigate the effects of the stream flow depletion not being directly offset" or "address impacts that cannot be practicably off-set (no more than half) through water-for-water actions" (WRIA 25/26 Watershed Management Plan) The WRIA 25/26 and 27/28 planning units also called for habitat mitigation to address stream and river habitat more broadly, even when not directly mitigating for lost instream flow, using the following criteria.

- "habitat actions should focus upon projects that improve stream conditions impaired by flow (e.g., projects that improve width to depth relationships or improve landscape-level hydrologic processes, etc.)"
- "habitat actions should address threats and limiting factors through priority actions identified in the Lower Columbia Salmon Recovery Plan"

This section defines a transparent and structured process to evaluate watershed / habitat mitigation proposals for comparison with remaining unmitigated stream flow depletion. A point system has been developed that equates highly diverse habitat mitigation actions to a unit of stream flow depletion. In order to access the reservation, habitat "mitigation points" must equal or exceed the amount of "depletion points". This criterion is subject to cost considerations, as defined in section 6.0.

Depletion points are based on the magnitude of flow depletion and the river miles that will be depleted. Further weighting of depletion points is based on stream reach biological importance and sensitivity to flow depletion. Basic rules are defined in order to receive points for habitat mitigation actions.

Specific types of mitigation actions and corresponding tables of points per unit of mitigation are defined. Some mitigation point tables are based on Instream Flow Incremental Methodology (IFIM) or other estimates of aquatic habitat lost per incremental loss of instream flow. When

mitigation actions did not have a clear relationship with a defined area of aquatic habitat, ranges of points were defined, allowing for best professional judgment.

Habitat mitigation proposals that are not defined in this guidance document can be proposed for evaluation on any given application for reserved water. The amount of points awarded for these actions will be determined on a case-by-case basis.

Context:

- The applicant has met at least 50% of their mitigation with flow-related actions (or to the maximum extent practicable).
- The applicant must satisfy the remaining flow depletion via habitat / watershed mitigation as a threshold requirement in order to access the instream flow reservation.

Goal:

- Create a transparent and structured process to evaluate watershed / habitat mitigation proposals for comparison with remaining depletion.
- Enable processing of highly diverse mitigation proposals

Assumptions:

- A ledger approach with dimensionless points can be used as an accounting system to "credit" mitigation points against depletion "debit" points.
- Streamflow depletion that remains un-mitigated after "flow-related" mitigation can be equated to "depletion points".
- The sum total of "mitigation points" must equal or exceed the "depletion points" in order to access the instream flow reservation.
- A variety of habitat / watershed related mitigation actions can be completed to accrue mitigation points.

I. Ledger System: Scoring Flow Depletion (impacts):

- Convert remaining flow depletion to dimensionless points using the following three factors:
 - Remaining unmitigated flow depletion- a unit of flow depletion is 0.1 cfs per river mile. River miles used in the impact calculation are only those that are 1) projected to be depleted by the water rights application, and 2) closed to conventional water rights applications.
 - If instream flow is considered limiting to fish production at the reach-scale relative to other habitat factors, then additional stream depletion must be accompanied by <u>twice</u> the habitat mitigation. The doubling the mitigation requirements is intended as a disincentive in order to avoid flow depletion impacts in waterbodies that are already limited by flow. Instream flow as a limiting factor is defined in terms of a "high" ranking in the LCFRB Habitat Work Schedule (HWS) Multi-Species Project Benefits matrix (Appendix A).
 - Reach Importance to fish recovery, according to the Habitat Work Schedule "Reach Tier". The interpretation of the reach tiers follows directly from the 2007 LCFRB Habitat Work Schedule Evaluation Criteria (Appendix A). The relative

proportion of depletion points follows from the LCFRB (2007) project evaluation and scoring process (The Habitat Work Schedule Evaluation Criteria are used to prioritize restoration proposals for funding.)

	Tuble 1. Conversion of remaining now depretion to depretion points						
	Reach Importance to Fish Recovery						
	Tier 1 Tier 2 Tier 3-						
	Depletion P	oints per 0.1 cfs-n	nile				
For depletion of surface waters where Instream flows is not an ecological limiting factor (i.e. medium or low project benefit on the Habitat Work Schedule).	5	3	1				
For depletion of surface waters where Instream flow is an ecological limiting factor (i.e. high project benefit on the habitat work schedule)	10	6	2				

Table 1.	Commenter	of works		flarre dan	1.4	. damlation	
Table 1:	Conversion	of rem	aining i	now dep	bletion to	o depletior	i points

Example: A water rights application will result in a 0.2 cfs reduction in flow in 3 miles of a tier 1 stream (left column) that is flow limited (bottom row). Therefore, every river mile that is depleted by 0.1 cfs will accrue 10 depletion points. Since 3 river miles were affected (x3) and 0.2 cfs were depleted (x2), <u>60 mitigation points</u> will be required to access the water reservation. This impact scenario will be used in mitigation examples that follow in this document.

II. Ledger System: Scoring Mitigation Actions for Comparison Against Depletion:

A. Background Information on Scoring Habitat/Watershed Mitigation Actions

- Basic rules for habitat / watershed mitigation proposals.
 - The mitigation actions must be for actions that are not already mandated to occur (e.g. culverts, critical areas protection, etc.)
 - Mitigation should normally occur in the same sub-basin as the flow depletion. However, in limited cases mitigation may be completed in another sub-basin if the applicant can demonstrate a substantially greater resource benefit will result.
 - Mitigation actions should be done in reaches where the related Habitat Work Schedule factor (Appendix A) is limiting (i.e. Multi-species Project Benefit = High or Medium)
 - Mitigation projects and actions should be developed and implemented using best available science and have a high long-term likelihood of success. Specific performance goals and measures (e.g. success rates, duration, desired future conditions, etc.) will be associated with each mitigation action and mutually agreed upon by the applicant and Ecology.
 - Mitigation projects <u>may</u> have a maintenance component, but <u>must</u> have a preservation component (e.g. transfer of development rights; public ownership, conservation covenant).

- In cases where multiple parties contribute to a project, the water right applicant only receives credit proportional to their contribution.
- Approaches to scale habitat / watershed mitigation value to streamflow depletion.
 - For each of these five categories, a simple scoring system has been developed. The value of mitigation <u>within</u> each category is generally defined by 1) the importance of the mitigation reach to fish recovery, and 2) the specific kind of mitigation action proposed. Mitigation actions were delineated as separate rows in the table if they had unique value, in terms of fish habitat recovery. If scoring across rows was defined by reach tiers, then the amount of points awarded is proportional to the LCFRB Habitat Work Schedule scoring criteria.
 - Since this framework includes a variety of mitigation actions, the value of mitigation <u>between</u> each category and flow depletion was determined using different rationale and methods.

	Mitigation Actions	Rationale	Processes and Functions Associated with Mitigation Actions	Mitigates Reduction in Aquatic Habitat	Mitigates Hydrologic Impacts	Method for Determining Value Relative to Flow Reduction
1	Side Channel/Off- Channel Habitat Restoration (per acre)	Increase the quantity of aquatic habitat	Refugia; spawning habitat; invertebrate production; over- wintering habitat	Х		IFIM modeled relationship between streamflow and In- channel Habitat
2	In-Channel Improvements (per 100 sq. ft)	Increase utilization of "downstream" aquatic habitat by increasing habitat quality	Refugia; wood and gravel recruitment; sediment sorting; bedform diversity; bed material retention	Х		IFIM modeled relationship between streamflow and In- channel Habitat
3	Wetland Restoration (per acre)	Some wetlands can attenuate transport of upslope stormwater to streams; store water from high-flow events; and / or contribute to baseflows	Maintenance of stream low-flow ; Attenuation of stormwater impacts; wetland water quality function; wetland habitat function		Х	Best Professional Judgment
4	Floodplain Re- connection (per acre)	Levee removal or setback allows for increased utilization of floodplain and increased water storage for low flow maintenance	Channel stability; sediment sorting; floodplain connectivity /storage; bedform diversity; hydraulic diversity; nutrient input; refugia		Х	Best Professional Judgment
5	Riparian Preservation and Restoration (per acre)	Riparian vegetation attenuates transport of water from watershed to channel and improves habitat conditions in the stream.	Shading; Bank stability; width/ depth; pollutant filtering; flow retention; erosion control; large woody debris input; refugia; channel roughness; leaf litter inputs; floodplain roughness		Х	Best Professional Judgement
6	Other Mitigation Actions	Applicants may propose other types of habitat / watershed mitigation. Those proposals will be evaluated on a case-by-case basis	Variable	Variable	Variable	Best Professional Judgement

Table 2: Rationale for Scoring Different Types of Habitat/Watershed Mitigation Actions

1. Instream Flow Incremental methodology (IFIM) modeled relationship between streamflow and usable aquatic habitat:

This IFIM approach is being applied to two in-channel mitigation actions 1) side channel/ off-channel habitat restoration and 2) in-channel improvements mitigation.

The value of in-channel mitigation actions can be quantified in terms of the usable aquatic habitat that is created or restored. The usable aquatic habitat created or restored can then be related to incremental flow loss via IFIM modeling results that relate changes to Weighted Usable Area (i.e. In-channel habitat) to In-channel flow. IFIM modeling studies have been completed in the East Fork Lewis, Kalama, and Washougal Rivers. In each study, we examined the modeled relationship between Weighted Usable Area and flow at the same low flows defined to make the water reservations (Appendix A). Based on the IFIM curves within the range of typical low flows, an average of 6.6 sq. feet of Weighted Usable Area per 1000 ft of stream length is predicted to be lost from an incremental loss of 0.1 cfs (Appendix A).

In this point system, streamflow depletion is defined in terms of 0.1 cfs per river mile. Since the depletion points are accrued in terms of river miles, the basis for mitigation scoring must be related to river miles. A loss of 6.6 sq. ft lost per 1000 ft of stream equals 34.85 sq. ft Weighted Usable Area lost per river mile. Therefore, 34.85 sq. ft is the effective "impact" of 0.1 cfs streamflow depletion per river mile. This is the value of one point for both depletion and mitigation.

The mitigation actions involving aquatic habitat creation or restoration are expressed in terms of 100 sq. ft created or restored. Therefore, since 34.85 sq. ft is equal to one point, for each 100 sq. ft of aquatic habitat created or restored, <u>3 points</u> are awarded.

0.1 cfs reduction = 6.6 sq. ft Weighted Usable Area lost per 1000 feet of stream (IFIM studies)

1 mile = 5280 ft 5280 ft / 1000 ft = 5.28

6.6 sq. ft * 5.28 = 34.85 sq. ft. Weighted Usable Area lost per river mile, per 0.1 cfs reduction in flow

This estimate is a generalization from the IFIM modeling results and not a quantitative extrapolation of the modeling results. Nevertheless, it provides a useful basis for assigning points to mitigation actions that create or improve in-channel habitat (i.e. weighted usable area), relative to loss of in-stream flow in large rivers. This method may be used for mainstem rivers of a size approximating the experience of the IFIM models. Generally, these rivers have a low-flow wetted width greater than 50 feet and are 4th order or larger streams. The following waterbodies meet this requirement and therefore, can be used with this method:

Table 3: Waterbodies where IFIM Data can be Applied
Waterbody
Grays River, Mouth to Confluence with West Fork
Cowlitz River, Mouth to Confluence with Muddy Fork
Toutle River, Mouth to Confluence with North Fork
Coweeman River, Mouth to Mulholland Creek
Kalama River, Mouth to Kalama River Falls (RM 10.4)
North Fork Lewis River, Mouth to Merwin Dam
East Fork Lewis River, Mouth to Confluence with Rock
Creek (upstream of Moulton Falls)
Washougal River, Mouth to Confluence with West Fork

2. Downscaling Approach for Smaller Streams

Since the IFIM modeling results were not based on data from smaller streams and rivers, the quantitative relationship between flow and habitat loss do not apply to these waterbodies. Therefore when smaller streams are involved, a different approach is needed for the two in-channel mitigation actions: 1) side channel/ off-channel habitat restoration and 2) in-channel improvements mitigation.

Ecology's biologist recommended using the assumption that the percentage of flow reduction is directly proportional to the percent reduction in Coho, Steelhead, and Cutthroat production and therefore "effective" aquatic habitat area. The causal mechanisms of reduced fish production are assumed to be habitat issues such as increased predation, decreased food supply, fish passage barriers, and less out-migration flushing. A technical white paper supporting this assumption was provided by Ecology's instream flow biologist and is on file at the LCFRB.

Based on this assumption, for smaller streams where side channel/off-channel habitat improvements or in-channel improvements are proposed as mitigation, the following procedure will be used on a case-by-case basis to value the habitat lost and mitigation required:

1) Define the monthly 90% exceedance flow for the low flow month of the affected stream. In order to define the monthly 90% exceedance flow, the following data can be used:

- In waterbodies that have established water reservations, 90% exceedance flows have already been established. These values may be used to define mitigation requirements in this procedure.
- If a waterbody has an established 10-year, 7-day low flow (7Q10), this value may be substituted for the monthly 90% exceedance flow statistic.
- In waterbodies that do not have established reservations or historical data, at least two years of weekly flow data must be taken during the low-flow month (i.e. August or September).

- Modeled or synthesized data may be acceptable, subject to Ecology and WDFW review. In some cases this may substitute for field data; or reduce the need for two years of data. For example, documentation of antecedent precipitation conditions coupled with flow data may be used to reduce the need for two years of data, subject to agency concurrence. Applicants are encouraged to discuss the use of these data early in the application process.
- Water bodies with 90% exceedance flows less than 10 cfs do not apply to this process and will be subject to a case-by-case review. The Committee does not intend that applicants be required to measure flows in these smaller streams.

2) Define the predicted in-stream flow loss.

3) Calculate the percentage of flow lost at the 90% exceedance flow.

4) Estimate the wetted area of the affected reach. The wetted area is the average wetted width multiplied by the linear stream distance of closed waters affected by the withdrawal. The average wetted width must be determined during the same month used to determine the 90% exceedance flow. Orthophotos or GIS may be used as long as the spatial data are from the correct month. Field measurements must be representative of the affected waterbody. The specific methods and level of effort can be established on a case-by-case basis with Ecology and WDFW.

5) Multiply the wetted area times the % flow reduction to yield an estimate of aquatic habitat area lost.

6) Define habitat area lost per 0.1 cfs per river mile (impact scoring units)

7) Increase or decrease depletion points proportionally based on the value of habitat lost per 0.1 cfs per river mile relative to the standard value of 34.85 sq. ft lost per 0.1 cfs per river mile for large rivers. Since the relationship between depletion points on Table 4 and mitigation points in the 1) Side Channel/Off-Channel Habitat Restoration and 2) In-Channel Improvements mitigation actions are defined for large rivers, the points need to be adjusted based on how much more or less the aquatic habitat is expected to be lost relative to large rivers.

8) Sum the adjusted depletion points based on the criteria in Table 4 (i.e. reach tier and flow as a limiting factor).

Note: The adjustment of depletion points for smaller streams only needs to be applied if the mitigation actions are 1)Side Channel/ Off-Channel Habitat Restoration and 2) In-Channel Improvements

Hypothetical example for the purposes of illustrating the proposed method:

1) Assume Rock Creek has a September 90% exceedance flow of 30.0 cfs. Rock Creek is a Tier 3 stream and instream flow is a limiting factor according to the Habitat Work Schedule. Assume one river mile of Rock Creek is predicted to be affected by the water right (assume uniform flow reduction).

2) The predicted in-stream flow loss from a given water right application is 0.3 cfs

3) This represents a 1% reduction during the low-flow period

4) Assume one river mile (5,280 ft) of uniformly affected stream is found to have an average (low flow) wetted width of 13 feet equaling 68,640 square feet of wetted area (5,280 ft x 13 ft = 68,640 sq. ft).

5) Assuming proportionality, the 1% reduction in flow will cause a 1% reduction in wetted area. This is a reduction of 686 square feet of wetted area.

6) The 1% reduction in flow was based on a 0.3 cfs reduction. So 686/3 = 229 sq. ft of habitat area lost per 0.1 cfs reduction.

7) This is a larger value than the relationship for larger rivers, which was 34.85 sq. ft. of habitat lost per 0.1 cfs reduction. Therefore, the points assigned for impact in the "ledger system" need to be increased proportionally. 229/34.85 = 6.6 times the depletion points are to be assigned for this particular example. A different result would be obtained in another example.

8) According to the guidance used for large rivers, each 0.1 cfs depletion per river mile of a tier 3 stream for which instream flow is a limiting factor, would yield 2 depletion points (see Table 4). Since the depletion estimate was 0.3 cfs, 6 points would be accrued for the large river method. However, since the small streams method has been applied to Rock Creek, the large river estimate of 6 points must be multiplied by 6.6, equaling 40 points needing to be offset with watershed/ habitat mitigation actions.

	Reach Importance to Fish Recovery				
	Tier 1 Tier 2		Tier 3-4		
	Depletion Points per 0.1 cfs-mile				
For depletion of surface waters where Instream flows is not an ecological limiting factor (i.e. medium or low project benefit on the Habitat Work Schedule).	5	3	1		
For depletion of surface waters where Instream flow is an ecological limiting factor (i.e. high project benefit on the habitat work schedule)	10	6	2		

Table 1	Convert	nomoining	flow	danlation	to de	mlation	mainta
Table 4.	Convert	remaining	HOW	depierion	10 (16	Dielion	DOILIS
10010	0011.010		110	a proviou			p 0

Limitations:

Stream flow depletions were established primarily for specific streams named in the reservations. The reservation allowance applies only to mainstem flows; it is not intended to allow for extensive dewatering of smaller water bodies (WRIA 25-26 Watershed Management Plan Table 4-4; WRIA 27-28 Watershed Management Plan, Table 4-4). The Planning Unit recognizes that ground water extraction may also affect these smaller water bodies due to changes in aquifer water levels that support base flows. *Therefore, ground water extraction that is anticipated to deplete water bodies with 90% exceedance flows less than 10 cfs will be subject to a case-by-case review. Under no circumstances will instream flows capable of supporting current fish stocks be converted to flows not capable of supporting those fish stocks.*

B. Scoring Tables for Habitat/Watershed Mitigation Actions

Side Channel/ Off-Channel Habitat Restoration

- A proposal for off-Channel Habitat Restoration must be justified and deemed appropriate in reach-scale and watershed-scale analyses. The Habitat Work Schedule result is from a watershed analysis.
- A detailed reach and site-scale assessment is required to determine potential benefits and risks (hydrology change could affect upstream or downstream bank stability / erosion). Potential benefits include fish access / refugia and increasing the hydrological connection with the floodplain. Newly created or restored side-channel habitat must be established successfully, but is not necessarily expected to persist into perpetuity, given the dynamic nature of channel-forming processes.
- In-channel Large Woody Debris and riparian restoration must accompany any new habitat reconnected or created.
- Requires permitting, maintenance, and monitoring

Scoring Considerations

- Base scoring is defined by the relationship between streamflow and In-channel habitat from IFIM.
- Scoring across columns reflects reach importance to fish recovery. Proportional increases in points awarded follows proportion of points awarded in LCFRB Habitat Work Schedule Evaluation Criteria.

Scoring matrix for Side Channel /	Reach Importance to Fish Recover		
Off-Channel habitat mitigation	Tier 1	Tier 2	Tier 3-4
actions.	Mitigation Points		
Creation or restoration of functional side-channel (100 sq. ft)	15	q	3

Example: A water rights application will result in a 0.2 cfs reduction in flow in 3 miles of a tier 1 stream that is flow limited. Therefore, <u>60 mitigation points</u> will be required to access the water reservation. In this scenario, the following examples of mitigation actions would meet this requirement:

- Creation or restoration of 400 sq. ft of functional side-channel in a tier 1 reach
- Creation or restoration of 667 sq. ft of functional side-channel in a tier 2 reach
- Creation or restoration of 2000 sq. ft of functional side-channel in a tier 3-4 reach

If the affected waterbody is considered a "small stream" as defined in section A, the small streams method for calculating mitigation requirements must be applied. The method results in a multiplication factor (see example in section A). As an example, if the multiplication factor was 2.0, the mitigation requirements would be doubled. In this scenario, the following examples of mitigation actions would meet this requirement:

- Creation or restoration of 400 sq. ft of functional side-channel in a tier 1 reach
- Creation or restoration of 1334 sq. ft of functional side-channel in a tier 2 reach

• Creation or restoration of 4000 sq. ft of functional side-channel in a tier 3-4 reach

Note: For all scenarios, a change in miles of depleted stream flow would drive mitigation requirements up or down.

In-channel improvements

- Goal is to improve instream conditions (e.g. improved pool habitat, sub-surface [hyporheic] flows, hiding cover, width to depth ratios, temperatures, etc.)
- Methods can be variable (e.g. in-stream structures include engineered large woody debris jams, boulder clusters, drop structures and porous weirs.)
- Commonly done as a means of improving in-channel habitat for fish and are meant to be analogs to otherwise naturally occurring features.
- Correct design and installation is critical to avoiding unintended degradation of stream habitat and processes.
- Needs to address causes of habitat problems, not symptoms
- A proposal for channel restoration using instream structures must be justified and deemed appropriate in site-scale, reach-scale and watershed-scale assessments. A detailed reach and site-scale assessment is required to determine potential benefits and risks. The Habitat Work Schedule limiting factor and reach tier results are from a watershed assessment.
- Requires permitting, maintenance, and monitoring.

Scoring Considerations

- Base scoring is defined by IFIM modeled relationship between streamflow and inchannel habitat.
- Scoring across columns reflects reach importance to fish recovery. Proportional increases in points awarded follows proportion of points awarded in LCFRB Habitat Work Schedule Evaluation Criteria.
- Instream structures are intended to improve existing aquatic habitat, and therefore make it more usable for salmonids. No additional aquatic habitat is being <u>created</u>. The mitigation plan must clearly indicate and justify how much area of salmonid habitat is being made more usable.

Sooring matrix for Instroom Condition	Reach Importance to Fish Recovery			
Scoring matrix for Instream Condition	Tier 1	Tier 2	Tier 3-4	
mitigation. In-channel improvements	Mitigation Points			
Restoration of functional aquatic habitat using Instream Structures; per 100 sq. ft	15	9	3	

Example: A water rights application will result in a 0.2 cfs reduction in flow in 3 miles of a tier 1 stream that is flow limited. Therefore, <u>60 mitigation points</u> will be required to access the water reservation. In this scenario, the following examples of mitigation actions would meet this requirement:

- Restoration of 400 sq. ft. of fish habitat in a tier 1 reach
- Restoration of 667 sq. ft. of fish habitat in a tier 2 reach
- Restoration of 2000 sq. ft. of fish habitat in a tier 3-4 reach

If the affected waterbody is considered a "small stream" as defined in section A, the small streams method for calculating mitigation requirements must be applied. The method results in a multiplication factor (see example in section A). As an example, if the multiplication factor was 2.0, the mitigation requirements would be doubled. In this scenario, the following examples of mitigation actions would meet this requirement:

- Creation or restoration of 400 sq. ft of functional side-channel in a tier 1 reach
- Creation or restoration of 1334 sq. ft of functional side-channel in a tier 2 reach
- Creation or restoration of 4000 sq. ft of functional side-channel in a tier 3-4 reach

Note: For all scenarios, a change in miles of depleted stream flow would drive mitigation requirements up or down.

Wetland Restoration

- Mitigation is subject to Army Corps / Ecology guidance and permitting requirements
- The wetland must have a demonstrated surface or hyporheic (subsurface) connection to a stream.

Scoring Considerations-

- Wetland restoration, creation, and enhancement will improve different ecological functions depending on its position in the watershed, and the hydrological connectivity with rivers and streams.
- In general, restoration gets more credit than creation because restoring wetland functions in a historical wetland has a higher likelihood of success.
- Enhancement of the restored or created wetland is commonly done, and adds some value. An example of enhancement includes noxious weed control and re-vegetation with appropriate native wetland plants.
- The following potential benefits can be used to determine the case-by-case point value:
 - Maintenance of stream hydrology in low-flow conditions
 - Attenuation of stormwater impacts to receiving waters, such as a stream
 - Improvement in water quality function
 - Improvement in habitat function

Scoring matrix for wetland mitigation actions.

	Mitigation Points
Per Acre	per acre
Restoration (re-establishment or	
rehabilitation)	15-20
Creation (establishment)	10-15
Enhancement	5-10

Example: A water rights application will result in a 0.2 cfs reduction in flow in 3 miles of a tier 1 stream that is flow limited. Therefore, <u>60 mitigation points</u> will be required to access the water reservation. In this scenario, the following examples of mitigation actions would meet this requirement:

- 3 to 4 acres of wetland restoration (depending on judgments regarding value)
- 4 to 6 acres of wetland creation
- 6 to 12 acres of wetland enhancement (can be used in combination with restoration and creation).

Floodplain Reconnection

- A proposal for levee\structure removal or modification must be justified and deemed appropriate in reach-scale and watershed-scale analyses. The Habitat Work Schedule result is from a watershed analysis.
- A detailed reach and site-scale assessment is required to determine potential benefits and risks.
- Requires riparian restoration.
- Requires permitting, maintenance, and monitoring.

Scoring Considerations

- Scoring across columns reflects reach importance to fish recovery. Proportional increases in points awarded follow from the LCFRB Habitat Work Schedule Evaluation Criteria.
- The following potential benefits can be used to determine the case-by-case point value:
 - o Habitat Restoration
 - Erosion reduction
 - Water quality improvements
 - Groundwater recharge
 - Restoring wildlife migration corridors
 - Reduction of flood-hazard risk

Scoring matrix for floodplain re-connection mitigation actions.

	Reach In	nportance to Fish	Recovery
Scoring matrix for Floodplain Re-connection	Tier 1	Tier 2	Tier 3-4
actions. Floodplain Utilization		Mitigation Points	
Reconnection of floodplain via levee setback or removal (per acre)	9- 21	6- 18	3- 9

Example: A water rights application will result in a 0.2 cfs reduction in flow in 3 miles of a tier 1 stream that is flow limited. Therefore, <u>60 mitigation points</u> will be required to access the water reservation. In this scenario, the following examples of mitigation actions would meet this requirement:

- 9 to20 acres of floodplain reconnection associated with a tier 1 river
- 10 to 30 acres of floodplain reconnection associated with a tier 2 river
- 20 to 60 acres of floodplain reconnection associated with a tier 3 or 4 river

Riparian Restoration

- Preservation can only be done by itself if the riparian habitat is of high quality and is at risk. "At risk" is defined by 1) not protected under a local critical areas or other land use ordinance, and 2) a demonstrated likelihood of future conversion of that habitat to another use.
- Low quality habitat requires restoration <u>and</u> preservation; more points are awarded for restoration and preservation. A "low quality riparian habitat" that has restoration potential must be defined by the applicant and verified by Ecology and / or WDFW.
- More points are awarded for work done in reaches that are of higher priority to fish (defined by Habitat Work Schedule reach tier).
- Riparian zone is defined as land within the Site-Potential Tree Height of the stream bank
- "High Quality" riparian habitat must be verified by WDFW. However, a definition follows from the WDFW "Management Recommendations for Washington's Priority Habitats: Riparian" definition of "intact" riparian vegetation. Some elements of this definition include:
 - a mixture of coniferous and deciduous trees;
 - a high degree of structural diversity (multiple canopy layers, a welldeveloped shrub layer, and variability in tree age, shape, and species);
 - high density and diversity of wildlife and plant species;
- Headwater streams are generally first or second order streams less than 5-10 feet in bankfull width (Oregon Headwaters Research Cooperative 2001).

Scoring Considerations

- Scoring across columns reflects reach importance to fish recovery. Proportional increases in points awarded follows proportion of points awarded in LCFRB Habitat Work Schedule Evaluation Criteria.
- Overall scoring reflects the expected indirect benefit to in-channel habitat that would mitigate for incremental flow reduction. Restoration and preservation riparian habitat primarily supports in-channel habitat forming processes, but does not directly compensate for loss in hydrological function. Therefore, there is no suitable quantitative relationship between this mitigation action and flow depletion. However, the <u>indirect</u> benefits of riparian function to stream habitat are well defined and accepted. Therefore, it is valid to promote the restoration and preservation of riparian habitat as a mitigation option. Scoring reflects the expected indirect benefit to streams per incremental flow reduction.

Scoring matrix for riparian mitigation actions.

	Reach Importance to Fish Recovery						
	Tier 1	Tier 2	Tier 3-4				
Points per acre of riparian habitat		Mitigation Points					
Preservation of high quality riparian habitat	12- 18	9- 15	4.5-9				
Restoration and Preservation of low quality riparian habitat	24- 36	12- 18	9- 15				

Example: A water rights application will result in a 0.2 cfs reduction in flow in 3 miles of a tier 1 stream that is flow limited. Therefore, <u>60 mitigation points</u> will be required to access the water reservation. In this scenario, the following examples of mitigation actions would meet this requirement:

- Preservation of 12-15 acres of riparian habitat associated with a tier 1 stream
- Preservation of 12-20 acres of riparian habitat associated with a tier 2 stream
- Preservation of 20-40 acres of riparian habitat associated with a tier 3-4 stream
- Restoration and preservation of 5-7.5 acres of riparian habitat associated with a tier 1 stream
- Restoration and preservation of 10-15 acres of riparian habitat associated with a tier 2 stream
- Restoration and preservation of 12-20 acres of riparian habitat associated with a tier 3-4 stream

Reference Information

Various reference documents may be useful in applying the scoring system described above. An initial list of documents includes:

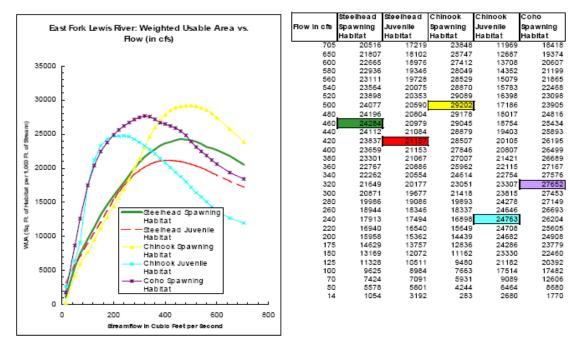
Washington State Department of Fish and Wildlife, *Stream Habitat Restoration Guidelines* (SHRG)

Washington State Department of Fish and Wildlife, *Integrated Streambank Protection Guidelines* (ISPG)

Appendix A: Tables supporting table logic and definitions

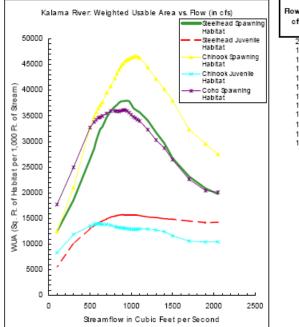
An example of a Habitat Work Schedule (Habitat Work Schedule) for a portion of the Grays River sub-basin. The Reach Tiers (1-4) are used to determine the importance of the reach to fish recovery. The Multi-Species Project Benefit ratings are used for scoring, in terms of ecological limiting factors.

								Restor	ation v.										
	Spec	ies P			nd R	each		Preser			ecies Project								e: project
			Poter	ntial	-	-		Va	lue	benefi	1	from conditi	ons of limiting	g factors and r	not from fi	ield observa	tion of site-sp	ecific project 1	needs
Stream Reaches	₩ Winter Steelhead	Summer Steelhead	च Fall chinook	Spring chinook	recoho	⊲ Chum	Reach Tier	Restoration	Preservation	Access to blocked habitats	Stream channel habitat structure & bank stability		Floodplain function and channel migration processes	Riparian conditions & functions	Water quality	Instream flows	Regulated stream mngt for habitat functions	Watershed conditions & hillslope processes	Food ²
Designation Grays 2	Р		P H		P H	H	_ ≃	<u>≃</u> 50%	50%	Ĭ	Н	Н	Н	Н	н	Н	Ĭ	Н	М
Grays 2B	Н		T		H	H	1	49%	51%	I	H	Н	H	Н	H	Н	I	Н	M
Grays 2D Grays 2C	M		M		H	H	1	48%	52%	I	Н	Н	Н	Н	Н	Н	I	Н	M
Grays 2A	M	1	M		Н	M	1	49%	51%	I	Н	Н	Н	Н	Н	Н	I	Н	M
WF Grays 1 Lower	Н		L		М	Н	1	59%	41%	L	Н	Н	Н	Н	Н	Н	L	Н	L
Grays 1G tidal	L		М		Η	М	1	51%	49%	L	Н	Н	Н	Н	Н	Н	L	Н	М
Fossil Cr Lower	М				М	Н	1	78%	22%	L	Н	Н	Н	Н	М	Н	L	Н	L
Grays 2D	L				М	Н	1	49%	51%	L	Н	Н	Н	Н	М	Н	L	Н	М
WF Grays 1	Н				L	М	1	61%	39%	L	Н	Н	Н	Н	M	Н	L	Н	L
Klints Cr Lower	L				L	Η	1	38%	62%	L	Н	Н	Н	Н	L	Н	L	Н	L
WF Grays 2	Н				L	L	1	62%	38%	L	Н	Н	Н	Н	M	Н	L	Н	L
WF Grays 3	Н				М		1	58%	42%	L	Н	Н	Н	Н	L	Н	L	Н	L
Beaver Cr	Н				L		1	54%	46%	L	Н	М	М	М	L	М	L	Н	L
Crazy Johnson	L					Η	1	15%	85%	L	Н	Н	Н	М	L	Н	L	М	L
Blaney Cr 1	H						1	66%	34%	L	H	H	M	M	M	Н	L	Н	L
EF Grays 1	H					_	1	48%	52%	L	Н	Н	M	M	L	Н	L	Н	L
EF Grays 3	Η						1	60%	40%	L	М	М	М	М	L	М	L	Н	L
Grays 3B ¹	H	L		<u> </u>	<u> </u>	<u> </u>	1	77%	23%	L	H	Н	M	Н	M	Н	L	Н	L
Grays 4A	H	<u> </u>					1	77%	23%	L	H	Н	M	M	L	Н	L	Н	L
Grays 4B	Н		—			-	1	76%	24%	L	Н	H	M	M	L	H	L	H	L
SF Grays 1	H	-				-	1	73%	27%	L	H	Н	Н	Н	Н	H	L	Н	L
SF Grays 2	Η	<u> </u>		1	<u> </u>	1	1	75%	25%	L	М	М	М	М	L	Н	L	М	L
Source: L	CF	RI	B ((2()()	8)													


Rules for determining reach importance to fish recovery (reach tiers). The rules are from the LCFRB Habitat Work Schedule Evaluation Criteria (LCFRB 2008).

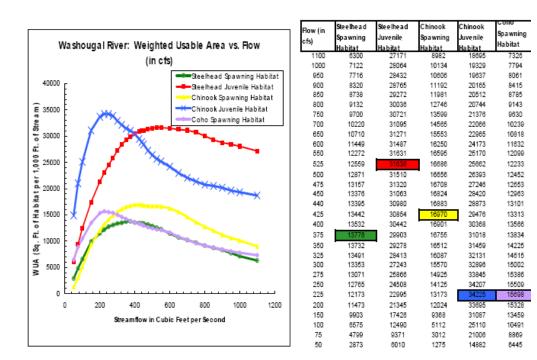
Designation	ons Rule
Reaches	Rule
Tier 1	All high priority reaches (based on EDT) for one or more primary populations.
Tier 2	All reaches not included in Tier 1 and which are medium priority reaches for one or more primary population and / or all high priority reahces for one or more contributing populations.
Tier 3	All reaches not included in Tiers 1 and 2 and which are medium priority reaches for contributing populations and/or high priority reaches for stabilizing populations.
Tier 4	Reaches not included in Tiers 1, 2, and 3 and which are medium priority reaches for stabilizing populations and / or low priority reaches for all populations.

Mitigation actions and their relation to Habitat Work Schedule (Habitat Work Schedule) factors.


	HWS Factor	Mitigation Actions
1	Off channel and side channel habitat	Side Channel/ Off-Channel Habitat Restoration
2	Stream channel habitat structure and bank stability	In-channel Improvements
3	Watershed conditions and hillslope processes	Wetland Restoration
4	Floodplain function and channel migration processes	Floodplain Re-connection
5	Riparian conditions and functions	Riparian Preservation and Restoration

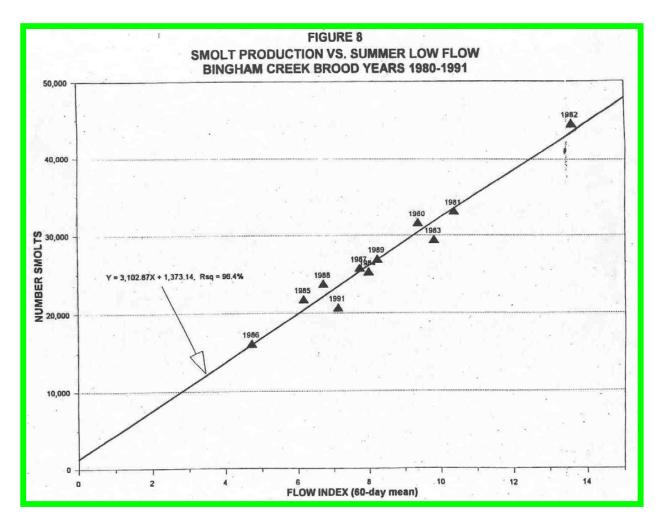
East Fork Lewis River Fish Habitat: Weighted Usable Area vs. Flow (in CFS)

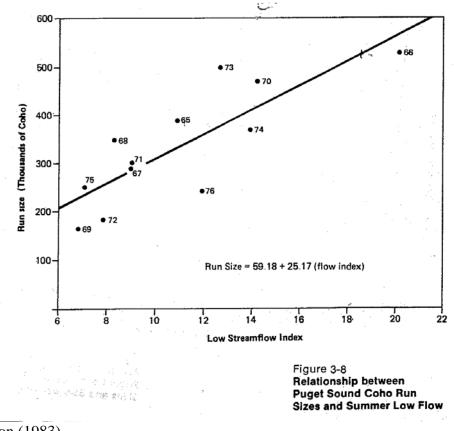
Source: Caldwell (1999)


Kalama River Fish Habitat: Weighted Usable Area vs. Flow (in cfs)

Flow in cfs	Steelhead Spawning Habitat	Steelhead Juvenile Habitat	Chinook Spawning Habitat	Chinook Juvenile Habitat	Coho Spawning Habitat
2050	19775	14274	27521	10475	20137
1900	20849	14199	29559	10433	20440
1700	23193	14512	32358	10616	22670
1500	26753	14862	37943	11634	26467
1400	29665	14961	40256	12470	28732
1300	31748	15197	42193	12765	30299
1200	34095	15289	44474	12963	32324
1100	35716	15588	46308	12972	34019
1075	35960	15643	46557	12928	34274
1050	36204	15670	46619	12899	34575
1025	36540	15669	46476	12903	34811
1000	37244	15663	46296	12911	35215
975	37866	15685	46136	12959	35621
950	37964	15708	45919	13045	35950
925	37886	15713	45651	13119	36130
900	37878	15736	45166	13173	
875	37823	15729	44610	13208	36004
850	37551	15669	44001	13242	35850
825	37114	15571	43252	13318	35893
800	36798	15466	42289	13437	35991
750	35926	15277	40753	13705	35929
700	34667	14896	39520	13858	35462
650	32856	14497	37688	13864	34992
625	32458	14319	37082	13916	34747
600	31367	14126	36466	13952	34619
575	30124	13899	35709	13978	34224
550	28596	13628	34759	13863	33821
500	26572	13064	32710	13550	32711
300	18565	10044	21030	11902	24969
100	12474	5671	12467	8339	17729

Source: Caldwell et al. (1999a)


Washougal River Fish Habitat: Weighted Usable Area vs. Flow (in cfs)


Source: Caldwell et al. (1999b)

Average Sq. ft. lost per 1000 ft of stream per 0.1 cfs incremental reduction in flow $% \left({{\left[{{{\rm{T}}_{\rm{T}}} \right]}} \right)$

Sub-Basin	Change in WUA
E.F. Lewis River	7
Kalama River	8
Washougal River	4

Source: Seiler (2001)

Source: Olson (1983)

Reference Information

Caldwell, B. 1999. East Fork Lewis River Fish Habitat Analysis Using the Instream Flow Incremental Methodology and Toe-Width Method for WRIA 27. Washington State Dept. of Ecology Publication No. 99-151.

Caldwell, B., Shedd, J., and Beecher, H. 1999a. Kalama River Fish Habitat Analysis Using the Instream Flow Incremental Methodology. Washington State Dept. of Ecology Publication No. 99-152.

Caldwell, B., Shedd, J., and Beecher, H. 1999b. Washougal River Fish Habitat Analysis Using the Instream Flow Incremental Methodology and the Toe-Width Method for WRIAs 25, 26, 28, and 29. Washington State Dept. of Ecology Publication No. 99-153.

LCFRB. 2008. Lower Columbia Fish Recovery Board Habitat Work Schedule Evaluation Criteria. http://www.lcfrb.gen.wa.us/2008%20HWS.htm

F.W. Olson, F.W. 1983. Draft EIS; South Fork Skokomish River Hydroelectric Project.

Seiler, Dave. 2001 Wild Coho Forecasts for Puget Sound and Washington Coastal Systems. WDFW.

Attachment F Example of Flow-Related Mitigation

Clark Public Utilities (CPU) Fargher Lake (Gilmour) Water Rights Case Study

Note: This case study description was authored by Clark Public Utilities. The WRIA 25-28 Mitigation Subcommittee responses to the questions raised are included below.

Case Study Description:

Clark Public Utilities needs additional water rights in the Pioneer, Meadow Glade, and Sara areas to augment supply in the north Clark County vicinity, including growth that is occurring in the Battle Ground and Ridgefield areas. Consistent with the WRIA 27/28 Planning Unit recommendations; CPU is targeting the deep Sand and Gravel Aquifer (SGA) as an source of supply while remedial solutions are implemented to clean up contamination that has affected the shallow Pleistocene Alluvial Aquifer (PAA) in the Vancouver Lake lowland. Operation of new supply sources would ultimately affect discharge of groundwater to nearby surface water bodies such as the East Fork Lewis River, Lake River, and the Columbia River. The East Fork would be considered a closed water body under the new watershed planning rules whereas Lake River and the Columbia River would be open to further appropriations.

PGG developed a preliminary groundwater flow model to evaluate how SGA development might influence stream flow in the lower portions of the East Fork Lewis River. **Figure 1** shows the locations of potential future supply wells in the model area. Under peak supply development Wells 32 and 33 would be operated at about 1,400 gpm and the Sara well would be operated at about 1,500 gpm (total pumping rate of 4,300 gpm or 9.6 cfs). Average rates of withdrawal would be about one-half the peak rates or a total of about 2,150 gpm (4.8 cfs).

PGG used the preliminary groundwater flow model to assess rates of streamflow capture based on the average rate of groundwater withdrawal from the proposed supply areas. **Figure 2** presents the estimated baseflow depletion along the East Fork of the Lewis River under these average withdrawal conditions. Baseflow depletion accumulates from upstream to downstream. Predicted rates of depletion are relatively small upstream of RM 9.4 due to isolation of the East Fork from the production aquifer (SGA). The model predicts that only 0.04 cfs of stream flow depletion would occur upstream of RM 9.4. Downstream of RM 9.4, where the pumped aquifer is in greater hydraulic connection to the East Fork, the model predicts a higher rate of stream flow depletion. Just above the confluence between the East Fork and the North Fork, the model predicts a net stream flow depletion of about 2.0 cfs (46% of pumping).

The model assumes that the wells would be operated at a continuous average rate. However actual production would be linked to seasonal demand with pumping rates varying by a factor of about two. The exact timing of seasonal capture would be dependent on the distance of the pumping well from the river and the storage properties of the aquifer. Given the distance of the proposed pumping centers from the river and the fact that the aquifer in the Pioneer area is

unconfined, significant lag times might be expected. Most of the capture would be focused on the mainstem, although the lower portion of small tributaries such as McCormick Creek might be affected to some extent. Very limit capture would occur below RM 2.5 as the East Fork enters the bedrock canyon downstream of LaCenter.

To mitigate for the potential impacts to the East Fork system CPU purchased a surface-water right for irrigation from the Gilmour farm near Fargher Lake Village, in the East Fork Lewis River watershed. The Gilmour water right has been evaluated and determined to represent an active water use from a small creek (Swale Creek tributary to Rock Creek), for a substantial amount of water, in a surface water basin with limited flows.

The water right was issued for 0.92 cfs and irrigation of 92 acres. In recent years, Gilmour's irrigated acreage expanded to about 150 acres. Water was used to grow mint and seed grass and for processing of the mint during the harvest season. Total consumptive use during the irrigation season for the Gilmour agricultural operation varied between 0.07 cfs in April to as high as 1.3 cfs during July and then to as low as 0.65 cfs in September. The Gilmour Farm did not use water during the non-irrigation season that extends between October and March.

The retirement of the Gilmour right will have significant instream flow benefits for the entire length of Rock Creek downstream from Fargher Lake, as well as for the East Fork Lewis River from the mouth of Rock Creek to La Center, where the river becomes tidally influenced via the Columbia River. **Figure 2** illustrates how the retirement of the Gilmour right will enhance flows in Rock Creek and portions of the East Fork Lewis River above RM 9.4 and mitigate stream flow capture impacts due to groundwater pumping below RM 9.4.

The diversion lies near the headwaters of Rock Creek or approximately 6 river miles north of the East Fork Lewis River. Rock Creek enters the East Fork at RM 16 or approximately 7 miles upstream of where future withdrawals by CPU will induce capture from the stream. Increased flow would be realized through a reach of about 13 miles that extends from Gilmour diversion on Rock Creek down to Daybreak Park (**Figure 1**).

Stream flow surveys by PGG and Clark County personnel indicate that flow ceases in the upper reaches of Rock Creek during the late summer and early fall. The stream was observed to be dry at the SR-503 crossing in early July, 2003 and county personnel have observed dry streambed conditions at Gabriel Road in early fall. Therefore, additional water introduced near the headwaters of the stream should provide substantial habitat benefits to the entire Rock Creek drainage.

Questions presented to the WRIA 25-28 Mitigation Subcommittee, and Proposed Responses:

1. Most debits from Reserve Block are going to be year-round uses, while most of water rights available for mitigation are going to be seasonal in nature with a different use profile – how do we reconcile that difference?

Mitigation Subcommittee Response: Management of both high and low flows is addressed in the Plan (Section 4.1, Appendices H and F). However, the plan emphasizes

the importance of managing flows during the dry periods of the year to provide for protection of fish, other aquatic life, recreation, and watershed health (Pg 4-1, Pg H-5, etc). The Plan makes numerous references to maintenance of baseflows as a high priority (Pg H-5). In light of this, for each application Ecology and WDFW would need to define the critical baseflow period, based on the fish populations and life histories present in relation to the hydrograph. Ecology would also make the determination on how much of an existing water right proposed for retirement would be recognized for use in mitigation, as well as the timing, using existing procedures. Ecology would then assess the volume and timing of mitigation flows in relation to the critical baseflow period, using the WRIA 25-28 mitigation guidelines.

(Note: Please refer to the attached "CPU Fargher Lake (Gilmour) Mitigation Example Weighting of Flow-Related Mitigation" document for an example of how to evaluate seasonality.)

2. With a larger summer irrigation season hit and minimal use the rest of the year, how do we assess "value" of an irrigation right for mitigation and how do we factor in the timing of capture vs. the timing of consumptive irrigation use vs. the timing of low flow season which may extend into late September or early October?

Mitigation Subcommittee Response: As noted above, the critical flow period would have to be defined based on the hydrograph, fish considerations, and the other beneficial uses involved. Pg H-7 states that "*responsibility for analysis of available water sources lies with the water rights applicant*", and that the "*application for the reservation will be reviewed, analyzed, and processed by Ecology in consultation with Fish and Wildlife*". Based on this, if information on the relationship between capture, consumption and critical flow periods is lacking, Ecology could require it as part of the submittal. If it is not available, assumptions would have to be made and documented for use in the evaluation process.

3. Historical water use by Gilmour has varied seasonally due to his historical agricultural practices. Theoretically, Mr. Gilmour would be able to place the full 0.92 cfs into use between May 1 and October 1 of every year. Therefore, shouldn't the full water right quantity be recognized for mitigation regardless of what recent patterns were established for consumptive use?

Mitigation Subcommittee Response: The authority for determining how much of a water right will be recognized as valid for mitigation purposes lies with the Department of Ecology. The WRIA 25-28 Mitigation Subcommittee has not developed specific guidelines or recommendations for determining how much of an existing water right would be recognized based on use patterns.

4. How do we define the stream flow capture reach? As noted above, capture would accrue incrementally from near zero at Daybreak Park (RM 9.4) to about 2.0 cfs near the bedrock notch just downstream of LaCenter (RM 2.5). If we define depletion in terms of both capture and distance along the stream, then what values do we assign to each?

Mitigation Subcommittee Response: In cases where capture varies across stream reaches, it could be proportioned along the stream gradient (see attached worksheet). If modeling is available, it should be used as the basis for proportioning. Two options for determining a "point of withdrawal" for assessing whether the 50% requirement is met could include using the midpoint of each proportioned reach and making individual depletion determinations, or establishing a single midpoint and averaging depletion for the combined reaches.

5. How much credit should CPU receive for the flow mitigation? Mitigation will be introduced almost 13 miles upstream of the area of capture. How do you assess "value" of providing mitigation water this far upstream from the area of capture? If no additional surface water rights become available for purchase, will CPU's total capture within the lower East Fork be limited to 1.84 cfs with half this amount mitigated by the Gilmour right?

Mitigation Subcommittee Response: Credit will be determined using the draft flowrelated mitigation guidelines the Planning Unit has been developing. Credits and debits will address factors such as length of stream affected, the reach tiering, and the flow impacts/benefits in each reach. Other weighting factors include water quality, timing, and the mainstem/tributary relationship. The attached draft spreadsheet presents one example of how the various factors could be documented to assist with credit determinations (see attached).

6. CPU is also investigating development of water supply from the Lewis River and Vancouver Lake lowland areas. The Lewis River supply would come from the shallow Pleistocene Alluvial Aquifer (PAA) that is hydraulically connected to the tidal reaches of both the East Fork and North Fork of the Lewis River. The Vancouver Lake lowland supply would initially come from the deep SGA aquifer and eventually the PAA aquifer after a remedial solution has been developed for the environmental sites that occur in the area. The costs associated with development of both of these supply areas would be far greater than development of new supplies in the Pioneer, Meadow Glade, and Sara area and it may take considerably longer to develop these supplies given the need to secure water rights and build infrastructure. CPU currently uses most all of their primary annual (Qa) water rights and new water rights are needed immediately to meet projected growth.

According to Section 3.3.3 of the WRIA 27/28 Watershed Plan:

Communities requesting additional ground water rights to serve growth must evaluate the relationship of their proposed water supply projects to stream flows.

Where this evaluation indicates that development of the source of supply will impact the flow regime, the Planning Unit recommends that the municipal water supplier analyze alternative options for water supplies. In such cases, supply alternatives include use of a different (most likely a deeper) aquifer, purchase of water from a neighboring community, development of a tidally-influenced source, or purchase of water from a regional water system.

If the supply alternatives analysis indicates that no practicable alternative is available, the water right applicant may petition Ecology to utilize a 'reservation of water defined within state rule (see Section 4.4.1).

A critical question for the Planning Unit is whether CPU is eligible to access their Reserve Block in the East Fork Lewis River if they have alternate supplies available in areas with out stream closures even though it may be far more expensive and time consuming to use these alternative supplies?

Mitigation Subcommittee Response: Development of regional water sources is described as a "critical" Planning Unit recommendation (Pg H-5 and H-6), and based on the above we understand that CPU is investigating two potential sources identified in the Plan. If alternative supplies with fewer impacts are available, then per Section 3.3.1 the Planning Unit recommends they be used. However, the Plan also recognizes temporal constraints. Pg H-5 states that

"Municipalities striving to meet demand in the interim period prior to development of a regional source, or in cases where regional sources are not feasible, should develop deep groundwater sources that are not in connectivity with surface waters. In cases where it is not feasible to avoid the use of groundwater in connectivity with surface water, a reservation of water will be reserved in rule to meet demand. The water rights applicant must evaluate all potential sources and demonstrate why use of the reservation is required"

Pg H-7 goes on further to state the following

"The Planning Unit recommends that Ecology consider the applicant's request to access the reservation of water relative to its intended use and timeframe. Several public purveyors have interim needs while a regional water source is developed. The Planning Unit supports an interim use of the reservation, especially as the certainty of a regional source increases <u>and</u> the reservation is retired after this interim use, or its use is diminished to fill a water system redundancy (backup) need. Ecology should consider a diminished use in terms of its predicted frequency of use and impact on fish habitat".

These Plan provisions suggest that while CPU continues to investigate and pursue development of regional water sources, use of the reservation would be appropriate.

CPU Fargher Lake (Gilmour) Mitigation Example Weighting of Flow-Related Mitigation

As an illustration of the weighting procedure for flow-related mitigation, the CPU Fargher Lake (Gilmour) mitigation project is scored below. The scoring is illustrative only, for purposes of discussing the weighting methodology. This weighting example is not intended to be used for actual processing of CPU's associated water rights application. This information is not a complete representation of the flow-related mitigation evaluation procedure. This information should be used in conjunction with other data developed for this example.

The example addresses only the East Fork Lewis River mainstem and Rock Creek. At this time, consideration is not given to other tributaries that could be affected by the proposed well withdrawals, as they have not been modeled. The scoring process for this case study is described below, and is summarized in Table 1.

Weighting Factor	Depletion Weight (normalized to 100	Mitigation Weight (assessed relative to
	total)	Depletion Weight)
Mainstem/trib relationship	n/a	n/a
Length of stream affected	34	49
LCFRB Tiers	33	57
Seasonality	33	28
Water Quality	n/a	n/a
Total Weight	100	134
Relative Value of Mitigation:	134/1	100 = 1.34

Table 1. Summary Scoring Table

<u>Step 1</u>: Select Weighting Factors

Three weighting factors are selected from the menu of five possible factors.

- The mainstem/tributary relationship is excluded because mitigation affects all the depleted reaches on the mainstem. Additional contribution for Rock Creek is covered under "length" and "tiers" so it was not being counted again here.
- Water quality is excluded because mitigation water and depleted water are both "high quality".

<u>Step 2</u>: Determine Depletion Weights

The three remaining weighting factors are assigned depletion weights, summing to 100. In the absence of better information, for this example it is assumed they should be equally weighted.

<u>Step 3</u>: Determine Mitigation Weights

Each individual factor is assessed. The Mitigation weight is scored either higher or lower than depletion weight, based on the analysis provided in the attached spreadsheet and application of professional judgment. In determining weighting factors related to length of stream and LCFRB reach tiers, flow is factored into each calculation. To accurately reflect habitat quantity, distance is also factored into tier weighting (see attached Excel spreadsheet).

• Length. Flow benefits and impacts vary along stream distance. To accurately assess the relative value of length, it must be considered in relation to flow quantity. For weighting purposes, length is therefore expressed in terms of "cfs-miles". As presented in the attached spreadsheet, this is calculated by multiplying flow (cfs) by the stream reach length (miles).

The mitigation covers approximately 20 cfs-miles, while the depletion affects approximately 14 cfs-miles. Dividing 20 by 14 yields a factor of 1.4. This indicates the mitigation is 1.4 times "longer" than the depletion, taking into account flow. The mitigation score is thus 1.4 times higher than the depletion score.

• Tiers. Tier designations reflect the relative importance of a particular stream reach to fish from a population recovery perspective. To accurately weigh the value of tier designations in relation to overall flow benefits and impacts, the reach length and flow contribution must also be considered. For weighting purposes, stream tiering is therefore expressed in terms of "cfs-tier-miles". As presented in the attached spreadsheet, this is calculated by multiplying "cfs-miles" by the assigned tier score.

The mitigation covers the same reaches as the depletion, as well as additional reaches. This gains some extra credit for the mitigation score. Rock Creek is a Tier 4 reach and thus doesn't add much in terms of tiering score (note that the extra length for Rock Creek was credited separately). However, East Fork Reach 8b is Tier 1 and over 5 miles long, and therefore adds substantial habitat value. The mitigation provides approximately 52 cfs-tiermiles, while the depletion score addresses approximately 30 cfs-tier-miles. The mitigation score is thus 1.7 times higher than the depletion score.

Seasonality. In evaluating seasonality, consideration must be given to flow benefits and depletion in relation to the hydrograph, as well as flow-habitat relationships for the species of interest. IFIM results demonstrate that for the species of interest, habitat availability is sensitive to flow changes from the lowest flows of record to approximately 500 cfs, at which point weighted usable area (WUA) begins to decline with increased flow. Average monthly statistics indicate that for the 50% exceedance flow, a discharge of 500 cfs or lower usually occurs between mid-May to mid-October, thus defining the critical flow period. As described in this case study, irrigation typically occurred between April and September, which addresses approximately 5 of the 6 critical months. The seasonality weighting is therefore given a rating of 27 (5 divided by 6, multiplied by 33). (Note: if the full water right quantity were recognized throughout the critical flow period, down-weighting would not result).

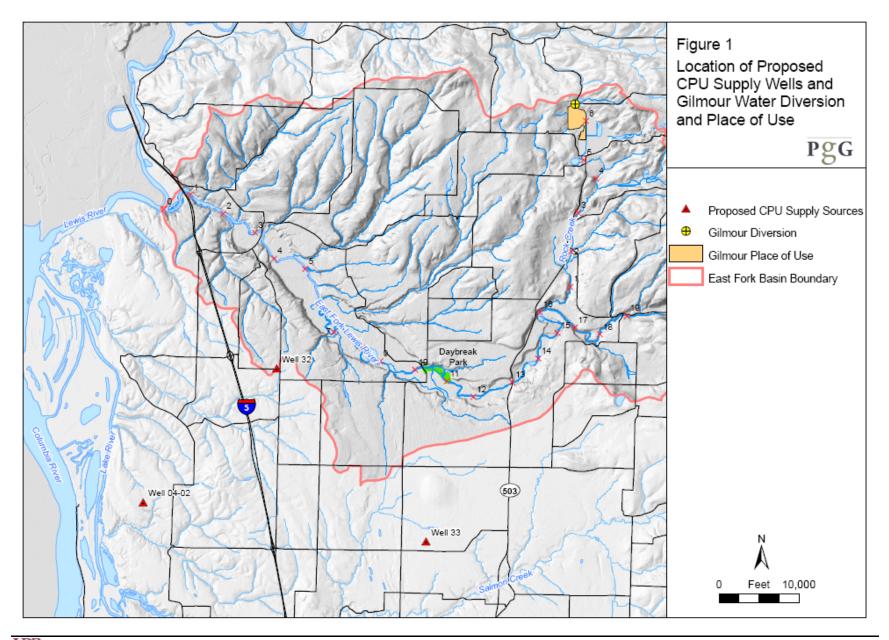
<u>Step 4</u>: Determine Mitigation Credit

The weighted mitigation scores are summed up, and the sum (134) is then compared with the standard 100 score on the depletion side. In this case, the mitigation scores higher, by a factor of 1.34. The overall result of 1.34 can be used to determine how much "credit" will be awarded for the mitigation action. Assuming a value of 0.92 cfs is used as the base quantity of mitigation, this could be up-weighted as follows:

1.34 X 0.92 cfs = 1.23 cfs

While this quantity cannot be used to satisfy the 50% requirement, it can be used to calculate the remaining, unmitigated stream depletion. Assuming a maximum depletion quantity of 2.0 cfs, this is:

2.0 cfs - 1.23 cfs = 0.77 cfs


(Note: The variable depletion presented in the case study may warrant a more complex calculation)

Use of Results (after weighting procedure). For purposes of determining whether the 50% flow-related mitigation threshold is met, the mitigation guidelines (Appendix C) call for establishment of a discrete "point of impact" on the affected water body for ground water applications. In this case study, streamflow depletion varies across stream reaches, increasing from RM 9.4 (Daybreak Park) to the mouth. Streamflow depletion was therefore partitioned into distinct segments (see attached spreadsheet).

The attached analysis demonstrates that if the acquired water right is valued at 0.92 cfs, mitigation flows would exceed 50% of the modeled depletion levels at the mid-point of all but the lower-most 5 affected stream reaches. In the lower-most 5 reaches, where flow would be depleted by 2 cfs, mitigation flows would only comprise 46% of the net stream flow depletion. This is below the required 50% threshold. When distance, tiering and flow are factored together, a net positive gain of 22 cfs-tier-miles would result from the proposed mitigation.

For illustrative purposes, if flow-related mitigation requirements were deemed satisfied, the applicant would be required to mitigate the remaining 0.77 cfs of stream flow depletion using habitat/watershed mitigation actions; as long as it is "practicable" (including cost considerations).

It should be noted that this example is presented to demonstrate how the flow-related and habitat scoring procedures could be applied, and how a spreadsheet analysis could be used to facilitate calculations. Factors such as tributary impacts, modeling assumptions, "point of impact" establishment, and the variable pumping and streamflow depletion described in this case study may necessitate more complex calculations and evaluation.

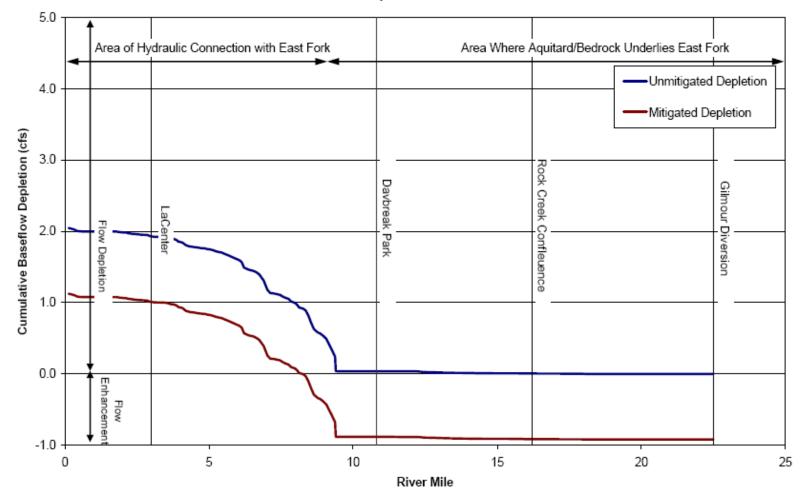
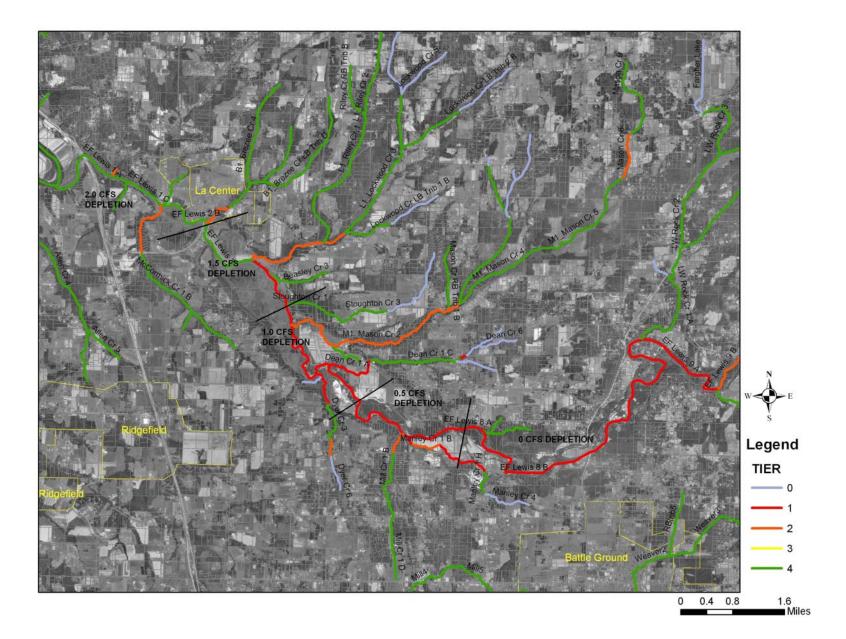



Figure 2 Estimated Baseflow Depletion in East Fork Lewis River

FLewis 1 B Jenny Cr 1 FF Lewis 1 C EF Lewis 1 FF Lewis 2 A McCormic FF Lewis 2 B EF Lewis 3 FF Lewis 2 B EF Lewis 3 FF Lewis 3 B Brazee Cr FF Lewis 4 B Beasley C FF Lewis 5 A McCormic FF Lewis 5 B Dyer Cr to FF Lewis 6 B Storedahl FF Lewis 6 C Storedahl FF Lewis 7 Mill Cr 1 ts FF Lewis 8 A Manley Cr W Rock Cr 1 A Mouth to 1 W Rock Cr 1 B Lw Rock C W Rock Cr 3 Lw Rock Cr W Rock Cr 4 Lw Rock C W Rock Cr 5 Lw Rock Cr W Rock Cr 1B Trib 1A Mouth to 1 W Rock Cr 1B Trib 1A Mouth to 1 W Rock Cr 1B Trib 1A Mouth to 1 W Rock Cr 1B Trib 1A Mouth to 1 W Rock Cr 1B Trib 1A Mouth to 1 <t< th=""><th>DESCRIPTION th to Jenny Cr ny Cr to EF Lewis LB Trib 1 Lewis LB Trib 1 to McCormick Cr 1 Cormick Cr 1 to EF Lewis RB Trib 1 Lewis RB Trib 1 to Brezee Cr 1 Zee Cr to Lockwood Cr kwood Cr to Beasley Cr siley Cr to Stoughton Cr ughton Cr to Mason Cr on Cr 1 to Dear Cr r Cr to Stordahl Pools redahl Dools redahl Dools redahl Dools redahl Pools re</th><th>TIER 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4</th><th>TIER SCORE 1 1 1 1 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1</th><th>LENGTH MILES 1.42 0.24 0.65 0.05 0.89 1.24 0.35 1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58</th><th>CFS 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92</th><th>CFS X MAINSTEM 1.3064 0.2208 0.598 0.046 0.8188 1.1408 0.3404 0.4876 0.322 1.1668 0.3312 0.2484 0.4692 1.0948 0.0828</th><th>TRIB 0</th><th>CFS X MI X TIER 1.3064 0.2208 0.598 0.046 0.8188 1.1408 1.3616 1.9504 1.288 4.7472 1.3248 0.9936</th><th>CFS 2 2 2 2 2 1.5 1.5 1.5 1.5 1 1 1</th><th>CFS X MAINSTEM 2.84 0.48 1.3 0.1 1.78 1.86 0.555 0.795 0.35 1.29</th><th>BIT MI 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>CFS X MI X TIER 2.84 0.48 1.3 0.1 1.78 1.86 2.22 3.18 1.4 1.4</th><th>CFS -1.08 -1.08 -1.08 -1.08 -1.08 -0.58 -0.58 -0.58 -0.58 -0.08</th><th>NET CFS X MI -1.5336 -0.2592 -0.702 -0.702 -0.054 -0.9612 -0.7192 -0.2146 -0.3074 -0.028 -0.1032</th><th>CFS X I X TIEF -1.533 -0.259 -0.702 -0.054 -0.961 -0.719</th></t<>	DESCRIPTION th to Jenny Cr ny Cr to EF Lewis LB Trib 1 Lewis LB Trib 1 to McCormick Cr 1 Cormick Cr 1 to EF Lewis RB Trib 1 Lewis RB Trib 1 to Brezee Cr 1 Zee Cr to Lockwood Cr kwood Cr to Beasley Cr siley Cr to Stoughton Cr ughton Cr to Mason Cr on Cr 1 to Dear Cr r Cr to Stordahl Pools redahl Dools redahl Dools redahl Dools redahl Pools re	TIER 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4	TIER SCORE 1 1 1 1 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1	LENGTH MILES 1.42 0.24 0.65 0.05 0.89 1.24 0.35 1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58	CFS 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	CFS X MAINSTEM 1.3064 0.2208 0.598 0.046 0.8188 1.1408 0.3404 0.4876 0.322 1.1668 0.3312 0.2484 0.4692 1.0948 0.0828	TRIB 0	CFS X MI X TIER 1.3064 0.2208 0.598 0.046 0.8188 1.1408 1.3616 1.9504 1.288 4.7472 1.3248 0.9936	CFS 2 2 2 2 2 1.5 1.5 1.5 1.5 1 1 1	CFS X MAINSTEM 2.84 0.48 1.3 0.1 1.78 1.86 0.555 0.795 0.35 1.29	BIT MI 0 0 0 0 0 0 0 0 0 0 0 0 0	CFS X MI X TIER 2.84 0.48 1.3 0.1 1.78 1.86 2.22 3.18 1.4 1.4	CFS -1.08 -1.08 -1.08 -1.08 -1.08 -0.58 -0.58 -0.58 -0.58 -0.08	NET CFS X MI -1.5336 -0.2592 -0.702 -0.702 -0.054 -0.9612 -0.7192 -0.2146 -0.3074 -0.028 -0.1032	CFS X I X TIEF -1.533 -0.259 -0.702 -0.054 -0.961 -0.719
EF Lewis 1 A Mouth to . FF Lewis 1 B Jenny Cr 1 FF Lewis 2 A McCormic FF Lewis 2 A McCormic FF Lewis 2 B EF Lewis 3 FF Lewis 3 B EF Lewis 3 FF Lewis 3 A Lockwood FF Lewis 4 B Beasley C FF Lewis 5 A Mason Cr FF Lewis 5 A Mason Cr FF Lewis 5 B Dyer Cr to FF Lewis 5 A Mason Cr FF Lewis 6 B Storedahl FF Lewis 6 B Storedahl FF Lewis 7 Mill Cr 1 A Mouth to . WRock Cr 1 A Mouth to 1 WRock Cr 2 WRock Cr 5 Lw Rock C WRock Cr 5 Lw Rock Cr 3 WRock Cr 4 Lw Rock Cr 4 WRock Cr 5 Lw Rock Cr 4 WRock Cr 1 B Trib 1 A Mouth to 1 WRock Cr 1 B Trib 1 C Lw Rock Cr 4 WRock Cr 1 B Trib 1 C WRock Cr 4 WRock Cr 1 B Trib 1 C WRock Cr 4 WRock Cr 1 B Trib 1 C WRock Cr 4 WRock Cr 1 B Trib 1 C WRock Cr 4 WRock Cr	ath to Jenny Cr ny Cr to EF Lewis LB Trib 1 Lewis LB Trib 1 to McCormick Cr 1 2ormick Cr 1 to EF Lewis RB Trib 1 Lewis LB Trib 1 to Brezee Cr 1 zee Cr to Lockwood Cr kwood Cr to Beasley Cr sige Cr to Stoughton Cr ughton Cr to Mason Cr orn Cr 1 to Dyer Cr r Cr to Dean Cr m Cr 1 to Storedahl Pools redahl Pools terdahl Pools Lewis RB Trib 2 to Rock Cr 1 uth to Lw Rock Cr RB Trib 2 Lewis RB Trib 2 to Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr LB Trib 1 Rock Cr Culv 1 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr Culv 2	4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	MILES 1.42 0.24 0.65 0.05 0.89 1.24 0.37 0.53 0.35 1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	MAINSTEM 1.3064 0.2208 0.598 0.046 0.8188 1.1408 0.3404 0.4876 0.322 1.1868 0.3312 0.2484 0.4692 1.0948	TRIB 0	X TIER 1.3064 0.2208 0.598 0.046 0.8188 1.1408 1.3616 1.9504 1.288 4.7472 1.3248	2 2 2 1.5 1.5 1.5 1.5 1 1 1	MAINSTEM 2.84 0.48 1.3 0.1 1.78 0.86 0.555 0.795 0.35 1.29	TRIB 0	X TIER 2.84 0.48 1.3 0.1 1.78 1.86 2.22 3.18 1.4	-1.08 -1.08 -1.08 -1.08 -1.08 -0.58 -0.58 -0.58 -0.58 -0.08	-1.5336 -0.2592 -0.702 -0.054 -0.9612 -0.7192 -0.2146 -0.3074 -0.028	X TIEF -1.533 -0.259 -0.702 -0.702 -0.054 -0.961 -0.719
EF Lewis 1 A Mouth to . FF Lewis 1 B Jenny Cr 1 FF Lewis 2 A McCormic FF Lewis 2 A McCormic FF Lewis 2 B EF Lewis 3 FF Lewis 3 B EF Lewis 3 FF Lewis 3 A Lockwood FF Lewis 4 B Beasley C FF Lewis 5 A Mason Cr FF Lewis 5 A Mason Cr FF Lewis 5 B Dyer Cr to FF Lewis 5 A Mason Cr FF Lewis 6 B Storedahl FF Lewis 6 B Storedahl FF Lewis 7 Mill Cr 1 A Mouth to . WRock Cr 1 A Mouth to 1 WRock Cr 2 WRock Cr 5 Lw Rock C WRock Cr 5 Lw Rock Cr 3 WRock Cr 4 Lw Rock Cr 4 WRock Cr 5 Lw Rock Cr 4 WRock Cr 1 B Trib 1 A Mouth to 1 WRock Cr 1 B Trib 1 C Lw Rock Cr 4 WRock Cr 1 B Trib 1 C WRock Cr 4 WRock Cr 1 B Trib 1 C WRock Cr 4 WRock Cr 1 B Trib 1 C WRock Cr 4 WRock Cr 1 B Trib 1 C WRock Cr 4 WRock Cr	ath to Jenny Cr ny Cr to EF Lewis LB Trib 1 Lewis LB Trib 1 to McCormick Cr 1 2ormick Cr 1 to EF Lewis RB Trib 1 Lewis LB Trib 1 to Brezee Cr 1 zee Cr to Lockwood Cr kwood Cr to Beasley Cr sige Cr to Stoughton Cr ughton Cr to Mason Cr orn Cr 1 to Dyer Cr r Cr to Dean Cr m Cr 1 to Storedahl Pools redahl Pools terdahl Pools Lewis RB Trib 2 to Rock Cr 1 uth to Lw Rock Cr RB Trib 2 Lewis RB Trib 2 to Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr LB Trib 1 Rock Cr Culv 1 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr Culv 2	4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	1.42 0.24 0.05 0.05 0.39 1.24 0.37 0.53 0.35 1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	1.3064 0.2208 0.598 0.046 0.8188 1.1408 0.3404 0.4876 0.322 1.1868 0.3312 0.2484 0.4692 1.0948	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.3064 0.2208 0.598 0.046 0.8188 1.1408 1.3616 1.9504 1.288 4.7472 1.3248	2 2 2 1.5 1.5 1.5 1.5 1 1 1	2.84 0.48 1.3 0.1 1.78 1.86 0.555 0.795 0.35 1.29	0 0 0 0 0 0 0 0 0 0	2.84 0.48 1.3 0.1 1.78 1.86 2.22 3.18 1.4	-1.08 -1.08 -1.08 -1.08 -1.08 -0.58 -0.58 -0.58 -0.58 -0.08	-1.5336 -0.2592 -0.702 -0.054 -0.9612 -0.7192 -0.2146 -0.3074 -0.028	-1.533 -0.259 -0.702 -0.054 -0.961 -0.719
F Lewis 1 B Jenny Cr 1 F Lewis 1 C EF Lewis F Lewis 2 A McCornic F Lewis 2 B EF Lewis F Lewis 2 B EF Lewis F Lewis 3 B Berzee Cr F Lewis 4 A Lockwood F Lewis 5 B Deant Cr F Lewis 5 B Dyer Cr to F Lewis 6 B Storedahl F Lewis 6 B Storedahl F Lewis 6 B Storedahl F Lewis 7 Mill Cr 1 tr F Lewis 8 A Manley Cr W Rock Cr 1 A Mouth to 1 W Rock Cr 1 B Lw Rock Cr W Rock Cr 1 B Trib 1 A Mouth to 1 W Rock Cr 1 B Trib 1 A Mouth to 1 W Rock Cr 1 B Trib 1 A Mouth to 1 W Rock Cr B Trib 1 A Mouth to 1 W Rock Cr B Trib 1 B W Rock Cr W Rock Cr B Trib B W Rock Cr Cr W Rock Cr B Trib B W Rock Cr	ny Cr to EF Lewis LB Trib 1 Lewis LB Trib 1 to McCormick Cr 1 Jornick Cr 1 to EF Lewis RB Trib 1 Lewis RB Trib 1 to Brezee Cr 1 Zee Cr to Lockwood Cr kwood Cr to Beasley Cr sley Cr to Stoughton Cr ughton Cr to Mason Cr or Cr Deas Cr or Cr to Dean Cr or Cr to Dean Cr or Cr to Dean Cr edahl Pools redahl Pools redahl Pools to Mill Cr 1 Cr 1 to Manley Cr 1 How Rock Cr RB Trib 2 to Rock Cr 1 th to Lu Rock Cr LB Trib 2 Rock Cr LB Trib 1 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 2 to Fargher Lake mitubluebery farms th to Lw Rock Cr LB Trib Dam 1	4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1	0.24 0.65 0.05 0.89 1.24 0.35 0.35 1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	0.2208 0.598 0.046 0.8188 1.1408 0.3404 0.4876 0.322 1.1868 0.3312 0.2484 0.4692 1.0948	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2208 0.598 0.046 0.8188 1.1408 1.3616 1.9504 1.288 4.7472 1.3248	2 2 2 1.5 1.5 1.5 1.5 1 1	0.48 1.3 0.1 1.78 1.86 0.555 0.795 0.35 1.29	0 0 0 0 0 0 0 0 0	0.48 1.3 0.1 1.78 1.86 2.22 3.18 1.4	-1.08 -1.08 -1.08 -1.08 -0.58 -0.58 -0.58 -0.58	-0.2592 -0.702 -0.054 -0.9612 -0.7192 -0.2146 -0.3074 -0.028	-0.259 -0.70 -0.05 -0.967 -0.719
F Lewis 1 C EF Lewis 2 A McCormic F Lewis 2 B EF Lewis 3 Berzee Cr F Lewis 3 B Berzee Cr F Lewis 3 Berzee Cr F Lewis 4 A Lockwood Lockwood F Lewis 5 A Mason Cr Stoughton F Lewis 5 A Mason Cr F Lewis 5 A Mason Cr F Lewis 5 A Mason Cr F Lewis 6 B Storedahl F Lewis 6 C Storedahl F Lewis 6 C Storedahl F Lewis 6 C Storedahl F Lewis 8 A Manely Cr F Lewis 7 Mill Cr 1 M Mouth to 1 M Rock Cr 1 A Mouth to 1 W Rock Cr 1 B Lw Rock Cr W Rock Cr 2 Lw Rock Cr W Rock Cr 4 Lw Rock Cr W Rock Cr 1 B Trib 1 A Mouth to 1 W Rock Cr 4 Lw Rock Cr W Rock Cr 1 B Trib 1 C W Rock Cr 3 W Rock Cr 1 B Trib 1 C W Rock Cr 1 B Trib 1 C W Rock Cr 3 Manely Cr M Rock Cr 1 B Trib 1 C W Rock Cr 7 A Mouth to 1 W Rock Cr 8 Trib A Mouth to 1 W Rock Cr 1 B Trib 1 C W Rock Cr 7 A Manely	Lewis LB Trib 1 to McCormick Cr 1 Cormick Cr 1 to EF Lewis RB Trib 1 Lewis RB Trib 1 to EF Lewis RB Trib 1 Lewis RB Trib 1 to EF Lewis RB Trib 1 zee Cr to Lockwood Cr Kwood Cr to Beasley Cr sley Cr to Stoughton Cr ughton Cr to Mason Cr son Cr 1 to Dyer Cr r Cr to Dean Cr r Cr to Dean Cr redahl pools to Mill Cr 1 Cr 1 to Manley Cr 1 redahl pools to Mill Cr 1 Cr 1 to Manley Cr 1 rie Ur to EF Lewis RB Trib 2 Lewis RB Trib 2 to Rock Cr 1 th to Lw Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr Clib Trib 2 Rock Cr Cul V 1 to Lw Rock Cr Culv 2 Rock Cr Cul V 1 to Lw Rock Cr Culv 2 Rock Cr Cul V 1 to Lw Rock Cr Culv 2 Rock Cr Cul V 1 to Lw Rock Cr Culv 2 Rock Cr LB Trib 2 to Lw Rock Cr Culv 2 Rock Cr Cul V 1 to Lw Rock Cr Culv 2 Rock Cr LB Trib 2 to Lw Rock Cr Culv 2 Rock Cr Culv 2 to Fargher Lake mint/blueberry farms th to Lw Rock Cr LB Trib Dam 1	4 4 4 1 4 4 4 4 4 4 4 4 4 4	1 1 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1	0.65 0.05 0.89 1.24 0.37 0.53 0.35 1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	0.598 0.046 0.8188 1.1408 0.3404 0.4876 0.322 1.1868 0.3312 0.2484 0.4692 1.0948	0 0 0 0 0 0 0 0 0 0 0 0	0.598 0.046 0.8188 1.1408 1.3616 1.9504 1.288 4.7472 1.3248	2 2 1.5 1.5 1.5 1 1 1	1.3 0.1 1.78 1.86 0.555 0.795 0.35 1.29	0 0 0 0 0 0 0	1.3 0.1 1.78 1.86 2.22 3.18 1.4	-1.08 -1.08 -0.58 -0.58 -0.58 -0.58 -0.08	-0.702 -0.054 -0.9612 -0.7192 -0.2146 -0.3074 -0.028	-0.70 -0.05 -0.96 -0.719
F Lewis 2 A McCormic F Lewis 2 B EF Lewis 3 F Lewis 3 B EF Lewis 4 F Lewis 4 A Lockwood F Lewis 4 B Beasley C F Lewis 5 B Dyer Cr to F Lewis 6 A Mason Cr F Lewis 6 B Storedahl F Lewis 8 A Manley Cr F Lewis 8 B EF Lewis 7 M Rock Cr 1 A Mouth to 1 W Rock Cr 1 B Lw Rock C W Rock Cr 1 B Lw Rock C W Rock Cr 5 Lw Rock C W Rock Cr 4 Lw Rock C W Rock Cr 5 Lw Rock C W Rock Cr 10 Mouth to 1 W Rock Cr 10 Manley Cr anley Cr 11 Manley Cr <td>Cormick Cr 1 to EF Lewis RB Trib 1 Lewis RB Trib 1 to Brezee Cr 1 Zee Cr to Lockwood Cr kwood Cr to Beasley Cr siley Cr to Stoughton Cr ughton Cr to Mason Cr siley Cr to Stoughton Cr of T to Dyer Cr r Cr to Dean Cr an Cr 1 to Storedahl Pools redahl Pools redahl Pools to Mill Cr 1 Cr 1 to Manley Cr 1 tey Cr 1 to Ever RB Trib 2 Lewis RB Trib 2 to Rock Cr 1 uth to Lw Rock Cr RB Trib Rock Cr LB Trib 1 to Lw Rock Cr LB Trib 1 Rock Cr Culv 1 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr Culv 1</td> <td>4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4</td> <td>1 1 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1</td> <td>0.05 0.89 1.24 0.37 0.53 0.35 1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58</td> <td>0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92</td> <td>0.046 0.8188 1.1408 0.3404 0.4876 0.322 1.1868 0.3312 0.2484 0.4692 1.0948</td> <td>0 0 0 0 0 0 0 0 0 0 0</td> <td>0.046 0.8188 1.1408 1.3616 1.9504 1.288 4.7472 1.3248</td> <td>2 2 1.5 1.5 1.5 1 1 1</td> <td>0.1 1.78 1.86 0.555 0.795 0.35 1.29</td> <td>0 0 0 0 0 0</td> <td>0.1 1.78 1.86 2.22 3.18 1.4</td> <td>-1.08 -1.08 -0.58 -0.58 -0.58 -0.58 -0.08</td> <td>-0.054 -0.9612 -0.7192 -0.2146 -0.3074 -0.028</td> <td>-0.05 -0.96 -0.71</td>	Cormick Cr 1 to EF Lewis RB Trib 1 Lewis RB Trib 1 to Brezee Cr 1 Zee Cr to Lockwood Cr kwood Cr to Beasley Cr siley Cr to Stoughton Cr ughton Cr to Mason Cr siley Cr to Stoughton Cr of T to Dyer Cr r Cr to Dean Cr an Cr 1 to Storedahl Pools redahl Pools redahl Pools to Mill Cr 1 Cr 1 to Manley Cr 1 tey Cr 1 to Ever RB Trib 2 Lewis RB Trib 2 to Rock Cr 1 uth to Lw Rock Cr RB Trib Rock Cr LB Trib 1 to Lw Rock Cr LB Trib 1 Rock Cr Culv 1 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr Culv 1	4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4	1 1 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1	0.05 0.89 1.24 0.37 0.53 0.35 1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	0.046 0.8188 1.1408 0.3404 0.4876 0.322 1.1868 0.3312 0.2484 0.4692 1.0948	0 0 0 0 0 0 0 0 0 0 0	0.046 0.8188 1.1408 1.3616 1.9504 1.288 4.7472 1.3248	2 2 1.5 1.5 1.5 1 1 1	0.1 1.78 1.86 0.555 0.795 0.35 1.29	0 0 0 0 0 0	0.1 1.78 1.86 2.22 3.18 1.4	-1.08 -1.08 -0.58 -0.58 -0.58 -0.58 -0.08	-0.054 -0.9612 -0.7192 -0.2146 -0.3074 -0.028	-0.05 -0.96 -0.71
F Lewis 2 B EF Lewis 3 F Lewis 3 A Brezec Cr F Lewis 4 A Lockwood F Lewis 4 B Beasley C F Lewis 5 A Mason Cr F Lewis 5 A Mason Cr F Lewis 6 B Dyer Cr to F Lewis 6 A Dean Cr 1 F Lewis 6 C Storedahl F Lewis 6 C Storedahl F Lewis 8 A Manley Cr F Lewis 8 A Manley Cr F Lewis 8 B EF Lewis 8 W W Rock Cr 1 B Lw Rock CW W Rock Cr 1 B Lw Rock CW W Rock Cr 1 B Lw Rock CW W Rock Cr 1 B Trib 1 A Mouth to 1 W Rock Cr LB Trib 1 B Lw Rock CM W Rock Cr LB Trib 1 B Lw Rock CM W Rock Cr LB Trib 1 B Lw Rock CM W Rock Cr LB Trib 1 B Lw Rock C W Rock Cr LB Trib 1 B Lw Rock C W Rock Cr LB Trib 1 B Lw Rock C W Rock Cr LB Trib 1 B Lw Rock C Manley Cr 1 D Manley Cr Ianley Cr 1 A Mouth to 1	Lewis RB Trib 1 to Brezee Cr 1 zee Cr to Lockwood Cr kwood Cr to Beasley Cr siley Cr to Stoughton Cr ughton Cr to Mason Cr or Cr Doper Cr or Cr to Doper Cr erdahl Pools redahl Pools to Mill Cr 1 Cr 1 to Manley Cr 1 to Manley Cr 1 to How Sort Cr 18 The Lewis RB Trib 2 to Rock Cr 1 th to Lu Rock Cr RB Trib Rock Cr RB Trib 1 to Lw Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr Clb Trib 2 Rock Cr Culv 1 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr LB Trib 2 to Lw Rock Cr B Trib Dam 1	4 4 1 4 4 4 4 4 4 4 4 4	1 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1	0.89 1.24 0.37 0.53 0.35 1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	0.8188 1.1408 0.3404 0.4876 0.322 1.1868 0.3312 0.2484 0.4692 1.0948	0 0 0 0 0 0 0 0 0 0 0	0.8188 1.1408 1.3616 1.9504 1.288 4.7472 1.3248	2 1.5 1.5 1.5 1 1	1.78 1.86 0.555 0.795 0.35 1.29	0 0 0 0	1.78 1.86 2.22 3.18 1.4	-1.08 -0.58 -0.58 -0.58 -0.08	-0.9612 -0.7192 -0.2146 -0.3074 -0.028	-0.96 -0.71
F Lewis 3 Brezee Cr F Lewis 4 A Lockwood F Lewis 4 B Beasley C F Lewis 4 C Stoughton F Lewis 5 B Dyer Cr to F Lewis 5 A Mason Cr F Lewis 5 A Dean Cr 1 F Lewis 5 A Dean Cr 1 F Lewis 6 A Dean Cr 1 F Lewis 6 B Storedahl F Lewis 6 B Storedahl F Lewis 8 A Manley Cr F Lewis 8 B EF Lewis W Rock Cr 1 B Lw Rock CW W Rock Cr 2 Lw Rock CW W Rock Cr 4 Lw Rock CW W Rock Cr 4 Lw Rock CW W Rock Cr 1 B Trib 1 A Mouth to 1 W Rock Cr 1B Trib 1 C Lw Rock C W Rock Cr B Trib 1 C Lw Rock C W Rock Cr B Trib 1 B Lw Rock C W Rock Cr B Trib 1 C Lw Rock C W Rock Cr B Trib 1 B Lw Rock C W Rock Cr B Trib A Mouth to 1 W Rock Cr B Trib A Mouth to 1 W Rock Cr B Trib A Mouth to 1	zee Cr to Lockwood Cr kwood Cr to Beasley Cr siley Cr to Stoughton Cr ughton Cr to Mason Cr son Cr 1 to Dyer Cr er Cr to Dean Cr son Cr 1 to Dyer Cr er Cr to Dean Cr son Cr 1 to Storedahl Pools redahl Pools redahl Pools redahl Pools redahl Pools tedahl Pools tedwork Cr RB Trib 1 to Lw Rock Cr	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4	1 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1	1.24 0.37 0.53 0.35 1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	1.1408 0.3404 0.4876 0.322 1.1868 0.3312 0.2484 0.4692 1.0948	0 0 0 0 0 0 0 0 0	1.1408 1.3616 1.9504 1.288 4.7472 1.3248	1.5 1.5 1.5 1 1	1.86 0.555 0.795 0.35 1.29	0 0 0 0	1.86 2.22 3.18 1.4	-0.58 -0.58 -0.58 -0.08	-0.7192 -0.2146 -0.3074 -0.028	-0.71
FLewis 4 A Lockwood FLewis 4 B Beasley C FLewis 4 C Stoughton FLewis 5 A Mason Cr FLewis 5 A Dyer Cr to FLewis 6 A Dean Cr 1 FLewis 6 B Storedahl FLewis 6 C Storedahl FLewis 7 Mill Cr 1 tr FLewis 8 B Storedahl FLewis 8 A Manley Cr W Rock Cr 1 A Mouth to 1 W Rock Cr 1 B Lw Rock Cr W Rock Cr 3 Lw Rock Cr W Rock Cr 5 Lw Rock Cr W Rock Cr 5 Lw Rock Cr W Rock Cr 1 B Trib 1 A Mouth to 1 W Rock Cr 1 B Trib 1 C Lw Rock Cr W Rock Cr 1B Trib 1 A Mouth to 1 W Rock Cr 1B Trib 1 A Mouth to 1 W Rock Cr 1B Trib 1 C Lw Rock Cr W Rock Cr 1B Trib 1 B Warck Cr Manley Cr 1 B Trib 1 A Mouth to 1 Manley Cr 1 B Trib 1 C W Rock Cr 1 B Trib 1 C Manley Cr 1 B Trib 1 A Mouth to 1 Manley Cr 1 B Trib 1 A Mouth to 1 Manley Cr 1 B Trib 1 A Mouth t	kwood Cr to Beasley Cr sley Cr to Stoughton Cr ughton Cr to Mason Cr son Cr 1 to Dyer Cr r Cr to Dean Cr an Cr 1 to Storedahl Pools redahl Pools redahl Pools redahl Pools to Mill Cr 1 Cr 1 to Manley Cr 1 tey Cr 1 to E Lewis RB Trib 2 they Cr 1 to E Lewis RB Trib 2 Lewis RB Trib 2 to Rock Cr 1 th to Lw Rock Cr RB Trib Rock Cr LB Trib 1 to Lw Rock Cr LB Trib 1 Rock Cr LB Trib 2 to Low Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 2 to Fargher Lake minutblueberry farms th to Lw Rock Cr LB Trib Dam 1	1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 1 1 1 1 1 1	0.37 0.53 0.35 1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	0.3404 0.4876 0.322 1.1868 0.3312 0.2484 0.4692 1.0948	0 0 0 0 0 0 0	1.3616 1.9504 1.288 4.7472 1.3248	1.5 1.5 1 1	0.555 0.795 0.35 1.29	0 0 0 0	2.22 3.18 1.4	-0.58 -0.58 -0.08	-0.2146 -0.3074 -0.028	
FLewis 4 B Beasley C FLewis 5 A Mason CT FLewis 5 B Dyer Cr to FLewis 5 B Dean Cr 1 FLewis 6 B Storedahl FLewis 7 Mill Cr 1 tk FLewis 8 B EF Lewis FLewis 8 B EF Lewis FLewis 8 B EF Lewis W Rock Cr 1 A Mouth to 1 W Rock Cr 2 Lw Rock C W Rock Cr 4 Lw Rock C W Rock Cr 4 Lw Rock C W Rock Cr 1 B Lw Rock C W Rock Cr 1 B Thib 1 A Mouth to 1 W Rock Cr 1 B Thib 1 B Lw Rock C W Rock Cr 1 B Thib 1 C Lw Rock C W Rock Cr B Thib 1 B Lw Rock C W Rock Cr B Thib 1 C Lw Rock C W Rock Cr B Thib 1 C W Rock Cr W Rock Cr B Thib 1 C W Rock Cr Manley Cr 1 A Mouth to 1 Manley Cr 1 B Manley Cr Man	sley Cr to Stoughton Cr ughton Cr to Mason Cr son Cr 1 to Dyer Cr r Cr to Dean Cr in Cr 1 to Storedahl Pools redahl pools tedahl pools to Manley Cr 1 to F Lewis RB Trib 2 Lewis RB Trib 2 to Rock Cr 1 th to Lw Rock Cr RB Trib Rock Cr RB Trib 1 to Lw Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr ClB Trib 2 Rock Cr LB Trib 1 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Law Rock Cr Culv 2 Rock Cr LB Trib 2 to Fargher Lake minut/blueberry farms th to Lw Rock Cr LB Trib 2 Rock Cr LB Trib 2 to Law Rock Cr Culv 2 Rock Cr Culv 2 to Fargher Lake minut/blueberry farms th to Lw Rock Cr LB Trib 2man 1	1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 1 1 1 1 1 1	0.53 0.35 1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	0.4876 0.322 1.1868 0.3312 0.2484 0.4692 1.0948	0 0 0 0 0 0	1.9504 1.288 4.7472 1.3248	1.5 1 1	0.795 0.35 1.29	0	3.18 1.4	-0.58 -0.08	-0.3074 -0.028	-0.85
F Lewis 4 C Stoughton F Lewis 5 A Mason Cr F Lewis 5 B Dyer Cr to F Lewis 6 B Storedahl F Lewis 6 B Storedahl F Lewis 6 B Storedahl F Lewis 8 A Manley Cr F Lewis 8 B EF Lewis 7 Mill Cr 1 K Wock Cr 1 A W Rock Cr 1 B Lw Rock C W Rock Cr 1 B Lw Rock C W Rock Cr 2 Lw Rock C W Rock Cr 3 Lw Rock C W Rock Cr 4 Lw Rock C W Rock Cr 5 Lw Rock C W Rock Cr 1 B Trib 1 A Mouth to 1 W Rock Cr 1 B Trib 1 C Lw Rock C W Rock Cr 1 B Trib 1 C Lw Rock C W Rock Cr B Trib A Mouth to 1 W Rock Cr B Trib A Mouth to 1 W Rock Cr B Trib A Mouth to 1 W Rock Cr C B Trib A Mouth to 1 W Rock Cr C B Trib A Mouth to 1 W Rock Cr B Trib B Lw Rock C Ianley Cr 1 A Mouth to 1 Ianley Cr 1 A Manley Cr <td>ughton Cr to Mason Cr son Cr 1 to Dyer Cr r Cr to Dean Cr r Cr to Dean Cr redahl Pools redahl Pools redahl pools to Mill Cr 1 Cr 1 to Manley Cr 1 Lewis RB Trib 2 to Rock Cr 1 Lewis RB Trib 2 to Rock Cr 1 Lewis RB Trib 2 to Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr LB Trib 1 Rock Cr LB Trib 2 to Lw Rock Cr Cullv 1 Rock Cr Cullv 1 to Lw Rock Cr Cullv 1 Rock Cr Cullv 1 to Lw Rock Cr Cullv 2 Rock Cr Cullv 1 to Lw Rock Cr Cullv 2 Rock Cr Cullv 2 to Fargher Lake milutblueberry farms th to Lw Rock Cr LB Trib Dam 1</td> <td>1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4</td> <td>4 4 4 4 4 4 4 4 4 1 1 1 1 1</td> <td>0.35 1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58</td> <td>0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92</td> <td>0.322 1.1868 0.3312 0.2484 0.4692 1.0948</td> <td>0 0 0 0 0</td> <td>1.288 4.7472 1.3248</td> <td>1 1</td> <td>0.35 1.29</td> <td>0</td> <td>1.4</td> <td>-0.08</td> <td>-0.028</td> <td>-1.22</td>	ughton Cr to Mason Cr son Cr 1 to Dyer Cr r Cr to Dean Cr r Cr to Dean Cr redahl Pools redahl Pools redahl pools to Mill Cr 1 Cr 1 to Manley Cr 1 Lewis RB Trib 2 to Rock Cr 1 Lewis RB Trib 2 to Rock Cr 1 Lewis RB Trib 2 to Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr LB Trib 1 Rock Cr LB Trib 2 to Lw Rock Cr Cullv 1 Rock Cr Cullv 1 to Lw Rock Cr Cullv 1 Rock Cr Cullv 1 to Lw Rock Cr Cullv 2 Rock Cr Cullv 1 to Lw Rock Cr Cullv 2 Rock Cr Cullv 2 to Fargher Lake milutblueberry farms th to Lw Rock Cr LB Trib Dam 1	1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 1 1 1 1 1	0.35 1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	0.322 1.1868 0.3312 0.2484 0.4692 1.0948	0 0 0 0 0	1.288 4.7472 1.3248	1 1	0.35 1.29	0	1.4	-0.08	-0.028	-1.22
F Lewis 5 A Mason Cr. F Lewis 5 B Dyer Cr to F Lewis 6 A Dean Cr 1 F Lewis 6 B Storedahl F Lewis 6 C Storedahl F Lewis 6 C Storedahl F Lewis 8 A Manley Cr F Lewis 8 B EF Lewis W Rock Cr 1 A Mouth to I W Rock Cr 1 B Lw Rock CW W Rock Cr 1 B Tib 1 A Mouth to I W Rock Cr B Tib 1 B Lw Rock CM W Rock Cr LB Tib 1 B Lw Rock CM W Rock Cr LB Tib 1 B Lw Rock CM W Rock Cr LB Tib 1 C Lw Rock CM W Rock Cr LB Tib 1 B Lw Rock CM W Rock Cr LB Tib 1 C Lw Rock CM W Rock Cr TB Tib A Mouth to 1 Manley Cr 1 Manley Cr Tanley Cr 1 A Mouth to 1 Tanley Cr 1 B Manley Cr Tanley Cr 1 F Manley Cr	son Cr 1 to Dyer Cr r Cr to Dean Cr in Cr 1 to Storedahl Pools redahl Pools redahl Pools to Mill Cr 1 Cr 1 to Manley Cr 1 Tel Lewis RB Trib 2 to Rock Cr 1 Lewis RB Trib 2 to Rock Cr 1 Lewis RB Trib 2 to Rock Cr LB Trib 1 Rock Cr RB Trib to Lw Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr ClB Trib 2 Rock Cr ClW Trib 2 to Lw Rock Cr ClU 1 Rock Cr ClW 1 to Lw Rock Cr ClU 2 Rock Cr ClW 1 to Lw Rock Cr ClW 2 Rock Cr ClW 1 to Lw Rock Cr LB Trib 2 How Cr LB Trib 2 to Lw Rock Cr ClW 2 Rock Cr ClW 2 to Fargher Lake mint/bluebery farms th to Lw Rock Cr LB Trib Dam 1	1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 1 1 1 1 1	1.29 0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92 0.92 0.92 0.92 0.92	1.1868 0.3312 0.2484 0.4692 1.0948	0 0 0 0	4.7472 1.3248	1	1.29					-0.1
F Lewis 5 B Dyer Cr to F Lewis 6 A Dean Cr 1 F Lewis 6 B Storedahl F Lewis 6 C Storedahl F Lewis 7 Mill Cr 1 K F Lewis 8 A Manley Cr F Lewis 8 B EF Lewis 8 W Rock Cr 1 A Mouth to 1 W Rock Cr 1 B Lw Rock CW W Rock Cr 2 Lw Rock CW W Rock Cr 4 Lw Rock CW W Rock Cr 4 Lw Rock CW W Rock Cr 4 Lw Rock CW W Rock Cr 4 B Trib 1 A Mouth to 1 W Rock Cr 1B Trib 1 C Lw Rock CW W Rock Cr B Trib A Mouth to 1 W Rock Cr B Trib B Lw Rock C W Rock Cr B Trib B Lw Rock C W Rock Cr B Trib B Lw Rock C U Rock Cr B Trib B Lw Rock C Tanley Cr 1 D Manley Cr Tanley Cr 1 D Manley Cr Tanley Cr 1 D Manley Cr Tanley Cr 1 F Manley Cr Tanley Cr 1 H Manley Cr Tanley Cr 1 H Manley Cr	rr Cr to Dean Cr an Cr 1 to Storedahl Pools redahl pools redahl pools to Mill Cr 1 Cr 1 to Manley Cr 1 Hey Cr 1 to EF Lewis RB Trib 2 Lewis RB Trib 2 to Rock Cr 1 th to Lw Rock Cr RB Trib Rock Cr RB Trib 1 to Lw Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr CLB Trib 2 Rock Cr Culv 1 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 2 to Fargher Lake minut/blueberry farms th to Lw Rock Cr LB Trib 2m 1 How Rock Cr LB Trib 2m 1 Rock Cr LB Trib 2 to Lw Rock Cr Culv 2 Rock Cr Culv 2 to Fargher Lake minut/blueberry farms th to Lw Rock Cr LB Trib Dam 1	1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 1 1 1 1 1	0.36 0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92 0.92 0.92 0.92	0.3312 0.2484 0.4692 1.0948	0	1.3248				5.16	-0.08	0.1032 J	-0.41
FLewis 6 A Dean Cr 1 FLewis 6 B Storedahl FLewis 6 C Storedahl FLewis 6 C Storedahl FLewis 7 Mill Cr 1 tr FLewis 8 A Manley Cr FLewis 8 B EFLewis 8 W Rock Cr 1 A Mouth to 1 W Rock Cr 1 B Lw Rock Cr W Rock Cr 2 Lw Rock CW W Rock Cr 3 Lw Rock CW W Rock Cr 4 Lw Rock CW W Rock Cr 5 Lw Rock CW W Rock Cr 1 B Trib 1 A Mouth to 1 W Rock Cr 1 B Trib 1 C Lw Rock CW W Rock Cr 1 B Trib 1 C Lw Rock CW W Rock Cr 1 B Trib 1 Mouth to 1 W Rock Cr B Trib 1 Mouth to 1 Manley Cr 1 Manley Cr Analey Cr 1 B Manley Cr Analey Cr 1 B Manley Cr Analey Cr 1 F Manley Cr Analey Cr 1 G Manley Cr Analey Cr 1 F Manley Cr Analey Cr 1 G Manley Cr Analey Cr 1 F Manley Cr A	In Cr 1 to Storedahl Pools redahl Pools redahl pools to Mill Cr 1 Cr 1 to Maniey Cr 1 They Cr 1 to Er Lewis RB Trib 2 Lewis RB Trib 2 to Rock Cr 1 uth to Lw Rock Cr RB Trib Rock Cr RB Trib 1 to Lw Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr ClB Trib 2 Rock Cr LB Trib 2 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 2 to Fargher Lake minutblueberry farms th to Lw Rock Cr LB Trib Dam 1	1 1 1 1 1 4 4 4 4 4 4 4 4	4 4 4 4 4 4 1 1 1 1	0.27 0.51 1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92 0.92 0.92	0.2484 0.4692 1.0948	0			0.36	0	1.44	-0.08	-0.0288	-0.11
FLewis 6 B Storedahl FF Lewis 6 C Storedahl FF Lewis 7 Mill Cr 1 K FF Lewis 8 A Manley Cr FF Lewis 8 A Manley Cr FF Lewis 8 B EF Lewis 8 W Rock Cr 1 A Mouth to 1 W Rock Cr 1 B Lw Rock Cr W Rock Cr 2 Lw Rock Cr W Rock Cr 2 Lw Rock Cr W Rock Cr 4 Lw Rock Cr W Rock Cr 4 Lw Rock Cr W Rock Cr 1B Trib 1 B Lw Rock Cr W Rock Cr LB Trib 1 A Mouth to 1 W Rock Cr LB Trib 1 C Lw Rock Cr W Rock Cr LB Trib 1 C Lw Rock Cr W Rock Cr B Trib A Mouth to 1 W Rock Cr RB Trib A Mouth to 1 W Rock Cr RB Trib A Mouth to 1 W Rock Cr C B Trib 1 B Lw Rock Cr Manley Cr 1 G Manley Cr Manley Cr 1 B Manley Cr Manley Cr 1 B Manley Cr Manley Cr 1 H Manley Cr Manley Cr 1 A Mouth to 1 Manley Cr 1 Manley Cr </td <td>redahl Pools redahl Pools Mill Cr 1 Cr 1 to Manley Cr 1 I or 1 to EF Lewis RB Trib 2 Lewis RB Trib 2 to Rock Cr 1 It to LW Rock Cr RB Trib Rock Cr RB Trib to LW Rock Cr LB Trib 1 Rock Cr RB Trib to LW Rock Cr LB Trib 2 Rock Cr LB Trib 2 to LW Rock Cr CUIv 1 Rock Cr CuIv 1 to LW Rock Cr CUIv 2 Rock Cr CUIv 2 to Fargher Lake mint/blueberry farms It to LW Rock Cr LB Trib Dam 1</td> <td>1 1 1 1 4 4 4 4 4 4 4 4 4</td> <td>4 4 4 4 1 1 1 1 1</td> <td>0.51 1.19 0.09 1.25 5.47 1.50 0.58</td> <td>0.92 0.92 0.92 0.92</td> <td>0.4692 1.0948</td> <td>0</td> <td></td> <td>1</td> <td>0.27</td> <td>0</td> <td>1.08</td> <td>-0.08</td> <td>-0.0216</td> <td>-0.08</td>	redahl Pools redahl Pools Mill Cr 1 Cr 1 to Manley Cr 1 I or 1 to EF Lewis RB Trib 2 Lewis RB Trib 2 to Rock Cr 1 It to LW Rock Cr RB Trib Rock Cr RB Trib to LW Rock Cr LB Trib 1 Rock Cr RB Trib to LW Rock Cr LB Trib 2 Rock Cr LB Trib 2 to LW Rock Cr CUIv 1 Rock Cr CuIv 1 to LW Rock Cr CUIv 2 Rock Cr CUIv 2 to Fargher Lake mint/blueberry farms It to LW Rock Cr LB Trib Dam 1	1 1 1 1 4 4 4 4 4 4 4 4 4	4 4 4 4 1 1 1 1 1	0.51 1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92 0.92	0.4692 1.0948	0		1	0.27	0	1.08	-0.08	-0.0216	-0.08
FLewis 6 C Storedahl FE Lewis 7 Mill Cr 1 tr FE Lewis 8 A Manley Cr FE Lewis 8 B EF Lewis 8 W Rock Cr 1 A Mouth to 1 W Rock Cr 1 B Lw Rock Cr W Rock Cr 1 B Lw Rock Cr W Rock Cr 3 Lw Rock Cr W Rock Cr 4 Lw Rock Cr W Rock Cr 4 Lw Rock Cr W Rock Cr 4 Lw Rock Cr W Rock Cr 1 B Trib 1 A Mouth to 1 W Rock Cr B Trib 1 A Mouth to 1 W Rock Cr B Trib 1 C Lw Rock Cr W Rock Cr B Trib 1 C Lw Rock Cr W Rock Cr B Trib B Mouth to 1 W Rock Cr B Trib B Mouth to 1 W Rock Cr B Trib B Mouth to 1 W Rock Cr B Trib A Mouth to 1 Manley Cr 1 B Manley Cr Manley Cr 1 B Manley Cr Manley Cr 1 B Manley Cr Manley Cr 1 F Manley Cr Manley Cr 1 Manley Cr Manley Cr 1 Manley Cr Manley Cr 1 Manley Cr <	redahl pools to Nill Cr 1 Cr 1 to Manley Cr 1 Cr 1 to Manley Cr 1 Lewis RB Trib 2 Lewis RB Trib 2 to Rock Cr 1 th to Lw Rock Cr RB Trib Rock Cr RB Trib to Lw Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr LB Trib 2 Rock Cr LB Trib 2 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 1 to Engriper Lake minut/blueberry farms th to Lw Rock Cr LB Trib 2m	1 1 1 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 1 1 1 1 1	1.19 0.09 1.25 5.47 1.50 0.58	0.92 0.92 0.92	1.0948		1.8768	1	0.51	0	2.04	-0.08	-0.0408	-0.16
FLewis 7 Mill Cr 1 tr. FF Lewis 8 A Manley Cr. FF Lewis 8 B EF Lewis 8 Wack Cr 1 A Mouth to 1 W Rock Cr 1 B Lw Rock Cr. W Rock Cr 1 B Lw Rock Cr. W Rock Cr 3 Lw Rock Cr. W Rock Cr 4 Lw Rock Cr. W Rock Cr 5 Lw Rock Cr. W Rock Cr 4 Lw Rock Cr. W Rock Cr 5 Lw Rock Cr. W Rock Cr 1 B Tib 1 A Mouth to 1 W Rock Cr LB Tib 1 B Lw Rock Cr. W Rock Cr LB Tib 1 B Lw Rock Cr. W Rock Cr LB Tib 1 B Lw Rock Cr. W Rock Cr LB Tib 1 B Lw Rock Cr. W Rock Cr LB Tib 1 B Lw Rock Cr. W Rock Cr B Tib A Mouth to 1 Manley Cr 1 A Mouth to 1 Manley Cr 1 B Manley Cr. Manley Cr 1 B Manley Cr. Manley Cr 2 Manley Cr. Manley Cr 3 Manley Cr. Manley Cr 4 Manley Cr. Manley Cr 1 Manley Cr. Manley Cr 1 Manley Cr	Cr 1 to Manley Cr 1 ley Cr 1 to EF Lewis RB Trib 2 Lewis RB Trib 2 to Rock Cr 1 Lewis RB Trib 2 to Rock Cr 1 Rock Cr RB Trib to Lw Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr LB Trib 2 Rock Cr LB Trib 2 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 2 to Fargher Lake mint/blueberry farms th to Lw Rock Cr LB mint	1 1 4 4 4 4 4 4 4 4 4 4	4 4 1 1 1 1 1	0.09 1.25 5.47 1.50 0.58	0.92 0.92		0	4.3792	0.5	0.595	0	2.38	0.42	0.4998	1.99
FLE wiss 8 A Manley Cr. FLE wiss 8 B EF Lewiss W Rock Cr 1 A Mouth to 1 W Rock Cr 1 B Lw Rock C W Rock Cr 1 B Lw Rock C W Rock Cr 2 Lw Rock C W Rock Cr 3 Lw Rock C W Rock Cr 4 Lw Rock C W Rock Cr 5 Lw Rock C W Rock Cr 4 Lw Rock C W Rock Cr 15 Lw Rock C W Rock Cr 16 Trib 1 A Mouth to 1 W Rock Cr 18 W Rock Cr 18 Trib 1 A Mouth to 1 Work Cr 18 W Rock Cr 18 Trib A Mouth to 1 Work Cr 18 W Rock Cr 18 Trib A Mouth to 1 Manley Cr Manley Cr 10 Manley Cr Manley Cr 10 Manley Cr Manley Cr 11 Manley Cr Manley Cr 2 Manley Cr Manley Cr 3 Manley Cr Manley Cr 14 Manley Cr Manley Cr 15 Manley Cr Manley Cr 14 Manley Cr <	ley Cr 1 to EF Lewis RB Trib 2 Lewis RB Trib 2 to Rock Cr 1 th to Lw Rock Cr RB Trib Rock Cr RB Trib to Lw Rock Cr LB Trib 1 Rock Cr LB Trib to Lw Rock Cr LB Trib 2 Rock Cr LB Trib 1 to Lw Rock Cr CUIv 1 Rock Cr CUIv 1 Rock Cr CUIv 1 to Lw Rock Cr CU v2 Rock Cr CUIv 2 Rock Cr CU to Fargher Lake mint/blueberry farms Lth to Lw Rock Cr B Trib 2	1 1 4 4 4 4 4 4 4 4 4	4 4 1 1 1 1 1	1.25 5.47 1.50 0.58	0.92		0	0.3312	0.5	0.045	0	0.18	0.42	0.0378	0.15
F Lewis 8 B EF Lewis W Rock Cr 1 A Mouth to 1 W Rock Cr 1 B Lw Rock C W Rock Cr 1 B Lw Rock C W Rock Cr 3 Lw Rock C W Rock Cr 4 Lw Rock C W Rock Cr 1 B Trib 1 A Mouth to 1 W Rock Cr LB Trib 1 B Lw Rock C W Rock Cr LB Trib 1 B Lw Rock C W Rock Cr LB Trib 1 B Lw Rock C W Rock Cr B Trib A Mouth to 1 M Rock Cr B Trib A Mouth to 1 Tanley Cr 1 B Manley Cr Tanley Cr 1 B Manley Cr Tanley Cr 1 C Manley Cr Tanley Cr 1 A Mouth to 1 Manley Cr 1 Manley Cr Tanley Cr 1 B Manley Cr Tanley Cr 1 C Manley Cr Tanley Cr 1 G Manley Cr T	Lewis RB Trib 2 to Rock Cr 1 uth to Lw Rock Cr RB Trib Rock Cr RB Trib to Lw Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr LB Trib 2 Rock Cr LB Trib 2 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 2 to Fargher Lake minutblueberry farms th to Lw Rock Cr LB Trib Dam 1	1 4 4 4 4 4 4 4 4	4 1 1 1 1 1	5.47 1.50 0.58		1.15	0	4.6	0.5	0.625	0	2.5	0.42	0.525	2.1
W Rock Cr 1 A Mouth to 1 W Rock Cr 1 B Lw Rock Cr W Rock Cr 2 Lw Rock Cr W Rock Cr 3 Lw Rock Cr W Rock Cr 3 Lw Rock Cr W Rock Cr 4 Lw Rock Cr W Rock Cr 5 Lw Rock Cr W Rock Cr 5 Lw Rock Cr W Rock Cr LB Trib 1 A Mouth to 1 W Rock Cr LB Trib 1 C Lw Rock Cr W Rock Cr LB Trib 1 C Lw Rock Cr W Rock Cr LB Trib 1 C Lw Rock Cr W Rock Cr B Trib A Mouth to 1 W Rock Cr RB Trib A Mouth to 1 Manley Cr 1 A Mouth to 1 Manley Cr 1 B Manley Cr Manley Cr 3 Manley Cr Manley Cr 4 Manley Cr Manley Cr 1 Manley Cr Manley Cr 3 Manley Cr Manley Cr 1 Manley Cr Manley Cr 1 Manley Cr Manley Cr 1 Manley Cr	Ith to Lw Rock Cr RB Trib Rock Cr RB Trib to Lw Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr LB Trib 2 Rock Cr LB Trib 2 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 2 to Fargher Lake mint/blueberry farms th to Lw Rock Cr LB Trib Dam 1	4 4 4 4 4 4 4	1 1 1 1	1.50 0.58	U.32	5.0324	0	20.1296	0.5	0.625	0	2.5	0.42	5.0324	20.12
W Rock Cr 1 B Lw Rock Cr W Rock Cr 2 Lw Rock Cr W Rock Cr 3 Lw Rock Cr W Rock Cr 4 Lw Rock Cr W Rock Cr 4 Lw Rock Cr W Rock Cr 5 Lw Rock Cr W Rock Cr 5 Lw Rock Cr W Rock Cr 1B Tib 1 A Mouth to L W Rock Cr 1B Tib 1 C Lw Rock Cr W Rock Cr LB Tib 1 C Lw Rock Cr W Rock Cr B Tib 2 Mouth to L W Rock Cr B Tib 2 Mouth to L W Rock Cr B Tib B Lw Rock Cr M Rock Cr B Tib B Mouth to L Manley Cr 1 B Manley Cr Analey Cr 1 B Manley Cr Analey Cr 1 C Manley Cr Analey Cr 1 G Manley Cr	Rock Cr RB Trib to Lw Rock Cr LB Trib 1 Rock Cr LB Trib 1 to Lw Rock Cr LB Trib 2 Rock Cr LB Trib 2 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 2 to Fargher Lake mint/blueberry farms th to Lw Rock Cr LB Trib Dam 1	4 4 4 4 4	1 1 1	0.58	0.92	0	1.38	1.38	0	0	0	0	0.92	1.38	
W Rock Cr 2 Lw Rock Cr W Rock Cr 3 Lw Rock Cr W Rock Cr 4 Lw Rock Cr W Rock Cr 4 Lw Rock Cr W Rock Cr 5 Lw Rock Cr W Rock Cr 5 Lw Rock Cr W Rock Cr 1B Trib 1 B Lw Rock Cr W Rock Cr LB Trib 1 B Lw Rock Cr W Rock Cr LB Trib 1 B Lw Rock Cr W Rock Cr LB Trib 1 B Lw Rock Cr W Rock Cr LB Trib A Mouth to 1 W Rock Cr B Trib A Mouth to 1 M Rock Cr T B Manley Cr Janley Cr 1 A Mouth to 1 Manley Cr 1 B Manley Cr Janley Cr 1 F Manley Cr Janley Cr 1 F Manley Cr Janley Cr 2 Manley Cr Janley Cr 3 Manley Cr Janley Cr 1 H Manley Cr Janley Cr 1 A Mouth to 1 Angley Cr 1 A Mouth to 1 Manley Cr 1 Manley Cr Janley Cr 1 B Manley Cr Janley Cr 1 A Mouth to 1 Macormick Cr 1 B McCormic	Rock Cr LB Trib 1 to Lw Rock Cr LB Trib 2 Rock Cr LB Trib 2 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 2 to Fargher Lake mint/blueberry farms th to Lw Rock Cr LB Trib Dam 1	4 4 4 4	1		0.92	0	0.5336	0.5336	0	0	0	0	0.92	0.5336	1.3 0.53
W Rock Cr 3 Lw Rock C W Rock Cr 4 Lw Rock C W Rock Cr 18 Trib 1 A Mouth to 1 W Rock Cr 18 Trib 1 C Lw Rock C W Rock Cr 18 Trib 1 C Lw Rock C W Rock Cr 18 Trib 1 C Lw Rock C W Rock Cr 18 Trib 1 C Lw Rock C W Rock Cr 18 Trib 1 C Lw Rock C Manley Cr 1 B Mouth to 1 Manley Cr 1 B Manley Cr Manley Cr 1 D Manley Cr Manley Cr 1 B Manley Cr Manley Cr 1 B Manley Cr Manley Cr 3 Manley Cr Manley Cr 3 Manley Cr Manley Cr 4 Manley Cr Manley Cr 3 Manley Cr Manley Cr 4 Manley Cr Manley Cr 1 Manley Cr M	Rock Cr LB Trib 2 to Lw Rock Cr Culv 1 Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 2 to Fargher Lake mint/blueberry farms th to Lw Rock Cr LB Trib Dam 1	4 4 4	1		0.92	0	1.5456	1.5456	0	0	0	0	0.92	1.5456	1.54
W Rock Cr 4 Lw Rock Cr W Rock Cr 5 Lw Rock Cr W Rock Cr LB Trib 1 A Mouth to 1 W Rock Cr LB Trib 1 B Lw Rock Cr W Rock Cr LB Trib 1 B Lw Rock Cr W Rock Cr LB Trib 1 B Lw Rock Cr W Rock Cr LB Trib 1 B Lw Rock Cr W Rock Cr LB Trib 2 Mouth to 1 W Rock Cr B Trib A Mouth to 1 Manley Cr 1 A Month to 1 Janley Cr 1 B Manley Cr Janley Cr 1 C Manley Cr Janley Cr 1 C Manley Cr Janley Cr 1 F Manley Cr Janley Cr 1 G Manley Cr Janley Cr 1 G Manley Cr Janley Cr 3 Manley Cr Janley Cr 1 H Manley Cr Janley Cr 1 A Mouth to 1 Accornick Cr 1 B McCornick Maccornick Cr 1 B McCornick Maccornick Cr 1 B McCornick Maccornick Cr 1 G (pond)	Rock Cr Culv 1 to Lw Rock Cr Culv 2 Rock Cr Culv 2 to Lw Rogher Lake mint/blueberry farms th to Lw Rock Cr LB Trib Dam 1	4		1.68 0.64	0.92	0	0.5888	0.5888	0	0	0	0	0.92	0.5888	0.58
W Rock Cr 5 Lw Rock Cr W Rock Cr LB Trib 1 A Mouth to I W Rock Cr LB Trib 1 B Lw Rock Cr W Rock Cr LB Trib 1 C Lw Rock Cr W Rock Cr LB Trib 1 C Lw Rock Cr W Rock Cr LB Trib 1 C Lw Rock Cr W Rock Cr LB Trib 1 C Lw Rock Cr W Rock Cr RB Trib A Mouth to I W Rock Cr RB Trib A Mouth to I Manley Cr 1 B Manley Cr Manley Cr 1 B Manley Cr Manley Cr 1 C Manley Cr Manley Cr 1 B Manley Cr Manley Cr 1 B Manley Cr Manley Cr 1 B Manley Cr Manley Cr 3 Manley Cr Manley Cr 3 Manley Cr Manley Cr 4 Manley Cr Manley Cr 3 Manley Cr Manley Cr 4 Manley Cr Manley Cr 5 Manley Cr Manley Cr 1 H Manley Cr Manley Cr 1 M Manley Cr <td>Rock Cr Culv 2 to Fargher Lake mint/blueberry farms uth to Lw Rock Cr LB Trib Dam 1</td> <td>4</td> <td></td>	Rock Cr Culv 2 to Fargher Lake mint/blueberry farms uth to Lw Rock Cr LB Trib Dam 1	4													
W Rock Cr LB Trib 1 A Mouth to 1 W Rock Cr LB Trib 1 C Lw Rock Cr W Rock Cr LB Trib 1 C Lw Rock Cr W Rock Cr LB Trib 2 Mouth to 1 W Rock Cr LB Trib 2 Mouth to 1 W Rock Cr LB Trib 3 Mouth to 1 W Rock Cr LB Trib 4 Mouth to 1 W Rock Cr LB Trib 5 Mouth to 1 Wards Cr RB Trib 1 Lw Rock Cr Manley Cr 1 B Manley Cr Manley Cr 1 B Manley Cr Manley Cr 1 C Manley Cr Manley Cr 1 C Manley Cr Manley Cr 1 G Manley Cr Manley Cr 2 Manley Cr Manley Cr 3 Manley Cr Manley Cr 4 Manley Cr Manley Cr 1 Manley Cr	uth to Lw Rock Cr LB Trib Dam 1		1	0.55	0.92	0	0.506	0.506	0	0	0	0	0.92	0.506 0.4324	0.50
W Rock Cr LB Trib 1 B Lw Rock C W Rock Cr LB Trib 1 C Lw Rock C W Rock Cr LB Trib 2 Mouth to 0 W Rock Cr LB Trib A Mouth to 1 W Rock Cr LB Trib A Mouth to 1 W Rock Cr LB Trib A Mouth to 1 W Rock Cr LB Trib A Mouth to 1 W Rock Cr LB Trib A Mouth to 1 Ianley Cr 1 A Mouth to 1 Ianley Cr 1 B Manley Cr Ianley Cr 1 C Manley Cr Ianley Cr 1 C Manley Cr Ianley Cr 1 F Manley Cr Ianley Cr 1 F Manley Cr Ianley Cr 1 G Manley Cr Ianley Cr 2 Manley Cr Ianley Cr 3 Manley Cr Ianley Cr 4 Manley Cr Ianley Cr 3 Manley Cr Ianley Cr 4 Manley Cr Ianley Cr 1 A Mouth to 1 IcCormick Cr 1 A McCormic IcCormick Cr 1 B McCormic IcCormick Cr 1 G (pond) Pond ass IcCormick Cr 1 G (pond) Pond asss IcCormick Cr 1 G			1			0					0	0			0.43
W Rock Cr LB Trib 1 C Lw Rock C W Rock Cr LB Trib 2 Mouth to 6 W Rock Cr RB Trib A Mouth to 6 W Rock Cr RB Trib B Lw Rock C Wack Cr RB Trib B Lw Rock C Manley Cr 1B Lw Rock C Manley Cr 1A Mouth to 1 Manley Cr 1B Manley Cr Manley Cr 1C Manley Cr Manley Cr 1 Manley Cr Manley Cr 2 Manley Cr Manley Cr 3 Manley Cr Manley Cr 4 Manley Cr Manley Cr 3 Manley Cr Manley Cr 4 Manley Cr Manley Cr 5 Manley Cr Manley Cr 6 Manley Cr Manley Cr 7 Manley Cr Manley Cr 7 Manley Cr Manley Cr 1 Manley Cr Manley Cr 1 Manley Cr Manley Cr 1 Mouth to 1 Recornick Cr 1 B				2.16	0	0	0	0	0	0	0	0	0	0	0
W Rock Cr LB Trib 2 Mouth to 4 W Rock Cr RB Trib A Mouth to 1 W W Rock Cr RB Trib B Lw Rock Cr Multiple Cr 1 A Mouth to 1 Manley Cr 1 B Manley Cr Manley Cr 1 B Manley Cr Manley Cr 1 C Manley Cr Manley Cr 1 C Manley Cr Manley Cr 1 C Manley Cr Manley Cr 1 F Manley Cr Manley Cr 1 G Manley Cr Manley Cr 3 Manley Cr Manley Cr 4 Manley Cr Manley Cr 3 Manley Cr Manley Cr 4 Manley Cr Manley Cr 5 Manley Cr Manley Cr 4 Manley Cr Manley Cr 5 Manley Cr Manley Cr 6 Manley Cr Manley Cr 7 Manley Cr Manley Cr 1		0	0	0.17		0	0	0	0	0	0		0	0	0
W Rock Cr RB Trib A Mouth to I W Rock Cr RB Trib B Lw Rock C Manley Cr 1 B Mouth to I Janley Cr 1 B Manley Cr Janley Cr 1 B Manley Cr Janley Cr 1 C Manley Cr Janley Cr 1 C Manley Cr Janley Cr 1 C Manley Cr Janley Cr 1 F Manley Cr Janley Cr 1 F Manley Cr Janley Cr 1 G Manley Cr Janley Cr 2 Manley Cr Janley Cr 3 Manley Cr Janley Cr 4 Manley Cr Janley Cr 5 Manley Cr Janley Cr 6 Manley Cr Janley Cr 7 Manley Cr Lanley Cr 1 H Manley Cr Janley Cr 3 Manley Cr Janley Cr 4 Manley Cr Lanley Cr 5 Manley Cr Janley Cr 6 Manley Cr Lanley Cr 7 Manley Cr Janley Cr 7 Manley Cr Janley Cr 7 Manley Cr Janley Cr 1 F Mouth to 7 LeCormick Cr 1 G (pond)	Rock Cr LB Trib Dam 2 to end of presumed coho/std	0	0	0.18	0	0	0	0	0	0	0	0	0	0	0
W Rock Cr RB Trib B Lw Rock C lanley Cr 1 A Mouth to 1 lanley Cr 1 B Manley Cr lanley Cr 1 B Manley Cr lanley Cr 1 B Manley Cr lanley Cr 1 D Manley Cr lanley Cr 1 E Manley Cr lanley Cr 1 F Manley Cr lanley Cr 1 G Manley Cr lanley Cr 1 G Manley Cr lanley Cr 3 Manley Cr lanley Cr 3 Manley Cr lanley Cr 3 Manley Cr lanley Cr 4 Manley Cr lanley Cr 4 Manley Cr lanley Cr 1 B McCornic fcCornick Cr 1 A Mouth to 1 fcCornick Cr 1 B (pond) Pond ass tcCornick Cr 1 H (pond) Mouth to 1 lil Cr 1 A Mouth to 1	uth to end of presumed Coho	4	1	1.60	0	0	0	0	0	0	0	0	0	0	0
Ianley Cr. 1 A Mouth to 1 Ianley Cr. 1 B Manley Cr. Ianley Cr. 1 D Manley Cr. Ianley Cr. 1 C Manley Cr. Ianley Cr. 1 D Manley Cr. Ianley Cr. 1 E Manley Cr. Ianley Cr. 1 E Manley Cr. Ianley Cr. 1 F Manley Cr. Ianley Cr. 1 G Manley Cr. Ianley Cr. 2 Manley Cr. Ianley Cr. 2 Manley Cr. Ianley Cr. 3 Manley Cr. Ianley Cr. 4 Manley Cr. Ianley Cr. 7 Manley Cr. Ianley Cr. 1 A Mouth to 1 IcCormick Cr. 1 B McCormic IcCormick Cr. 1 B McCormic IcCormick Cr. 1 G (pond) Pond asso IcCormick Cr. 1 G (pond) Pond asso IcCormick Cr. 1 G (pond) Pond asso IcCormick Cr. 1 B Mouth to 0 Iid Cr. 1 A Mouth to 1	uth to Lw Rock Cr RB Trib Culv	4	1	0.07	0	0	0	0	0	0	0	0	0	0	0
Ianley Cr. 1 B. Manley Cr. Ianley Cr. 1 C. Manley Cr. Ianley Cr. 1 D. Manley Cr. Ianley Cr. 1 E. Manley Cr. Ianley Cr. 1 F. Manley Cr. Ianley Cr. 1 F. Manley Cr. Ianley Cr. 1 G. Manley Cr. Ianley Cr. 1 G. Manley Cr. Ianley Cr. 2 Manley Cr. Ianley Cr. 3 Manley Cr. Ianley Cr. 3 Manley Cr. Ianley Cr. 4 Manley Cr. Ianley Cr. 5 Manley Cr. Ianley Cr. 1 B. McCormic Cr. IcCormick Cr. 1 B. McCormic IcCormick Cr. 1 B. IcCormick Cr. 1 C. McCormic IcCormick Cr. 1 D. IcCormick Cr. 1 G. (pond) Pond assc IcCormick Cr. 1 G. (pond) Pond assc IcCormick Cr. 1 G. (pond) Pond assc IcCormick Cr. 1 B. Mouth to 1 III Cr. 1 A. Mouth to 1	Rock Cr RB Trib Culv to end of potential Coho, creek bypasses the ponds	0	0	0.35	0	0	0	0	0	0	0	0	0	0	0
tanley Cr. 1 C Manley Cr. tanley Cr. 1 D Manley Cr. tanley Cr. 1 E Manley Cr. tanley Cr. 1 F Manley Cr. tanley Cr. 1 F Manley Cr. tanley Cr. 1 G Manley Cr. tanley Cr. 1 G Manley Cr. tanley Cr. 2 Manley Cr. tanley Cr. 3 Manley Cr. tanley Cr. 4 Manley Cr. tanley Cr. 3 Manley Cr. tanley Cr. 4 Manley Cr. tanley Cr. 1 Cormick Cr. 1 Maconley Cr. <	uth to Manley Cr Culv 1	1	4	0.15	0	0	0	0	0	0	0	0	0	0	0
Ianley Cr. 1 D Manley Cr. Ianley Cr. 1 E Manley Cr. Ianley Cr. 1 F Manley Cr. Ianley Cr. 1 G Manley Cr. Ianley Cr. 1 G Manley Cr. Ianley Cr. 2 Manley Cr. Ianley Cr. 3 Manley Cr. Ianley Cr. 3 Manley Cr. Ianley Cr. 4 Manley Cr. Ianley Cr. 7 Manley Cr. Ianley Cr. 1 Moctomic IcCormick Cr. 1 B McCormic IcCormick Cr. 1 G (pond) Pond asso IcCormick Cr. 1 G (pond) Pond asso IcCormick Cr. 1 G (pond) Pond asso IcCormick Cr. 1 B Mouth to 1 III Cr. 1 A Mouth to 1	nley Cr Culv 1 to Manley Cr Culv 2	2	3	0.44	0	0	0	0	0	0	0	0	0	0	0
tanley Cr. 1 E Manley Cr. tanley Cr. 1 F Manley Cr. tanley Cr. 1 G Manley Cr. tanley Cr. 1 G Manley Cr. tanley Cr. 1 G Manley Cr. tanley Cr. 2 Manley Cr. tanley Cr. 3 Manley Cr. tanley Cr. 4 Manley Cr. tanley Cr. 4 Manley Cr. tanley Cr. 4 Manley Cr. teCormick Cr. 1 A Mouth to 1 teCormick Cr. 1 C McCormic teCormick Cr. 1 D McCormic teCormick Cr. 1 F Top of Mc teCormick Cr. 1 H (pond) Pond ass teCormick Cr. 1 H (pond) Pond ass teCormick Cr. 1 H (pond) Pond ass teCormick Cr. 1 H (pond) Mouth to 1 till Cr. 1 A Mouth to 1 till Cr. 1 A Mouth to 1	nley Cr Culv 2 to Manley Cr Culv 3	1	4	0.42	0	0	0	0	0	0	0	0	0	0	0
Ianley Cr. 1 F Manley Cr. Ianley Cr. 1 G Manley Cr. Ianley Cr. 1 H Manley Cr. Ianley Cr. 2 Manley Cr. Ianley Cr. 3 Manley Cr. Ianley Cr. 3 Manley Cr. Ianley Cr. 4 Manley Cr. Ianley Cr. 3 Manley Cr. Ianley Cr. 4 Manley Cr. Ianley Cr. 4 Manley Cr. Ianley Cr. 1 A Mouth to 1 IcCormick Cr. 1 B McCormic IcCormick Cr. 1 B McCormic IcCormick Cr. 1 D McCormic IcCormick Cr. 1 G (pond) Pond ass IcCormick Cr. 1 H (pond) Pond ass IcCormick Cr. 1 B Mouth to 7 IcCormick Cr. 1 H (pond) Pond ass IcCormick Cr. 1 H (pond) Pond ass IcCormick Cr. 1 H (pond) Pond ass IcCormick Cr. 1 B Mouth to 7 III Cr. 1 A Mouth to 1	nley Cr Culv 3 to Manley Cr Culv 4	1	4	0.13	0	0	0	0	0	0	0	0	0	0	0
Itanleý Cr. 1 G Manleý Cr. Itanley Cr. 1 H Manley Cr. Itanley Cr. 2 Manley Cr. Itanley Cr. 3 Manley Cr. Itanley Cr. 3 Manley Cr. Itanley Cr. 4 Montey Cr. Itanley Cr. 1 McCormic ItaCormick Cr. 1 McCormic ItaCormick Cr. 1 McCormic ItaCormick Cr. 1 Ita Pond asson ItaCormick Cr. 1 Top of Mc ItaCormick Cr. 1 Top of Mc ItaCormick Cr. 1 Top of Mc ItaCormick Cr. 1 Mouth to 0 Ita Cr. 1 Mouth to 1	nley Cr Culv 4 to Manley Cr Culv 5	1	4	0.24	0	0	0	0	0	0	0	0	0	0	0
Ianley Cr. 1 H Manley Cr. Ianley Cr. 2 Manley Cr. Ianley Cr. 3 Manley Cr. Ianley Cr. 4 Manley Cr. Ianley Cr. 4 Manley Cr. Ianley Cr. 4 Manley Cr. Iaccomick Cr. 1 A Mouth to 1 IdeCornick Cr. 1 C McCornic IdeCornick Cr. 1 D McCornic IdeCornick Cr. 1 E (pond) Pond ass IdeCornick Cr. 1 F Top of Mc IdeCornick Cr. 1 I (pond) Pond ass IdeCornick Cr. 1 B (pond) Pond ass IdeCornick Cr. 1 H (pond) Pond ass IdeCornick Cr. 1 H (pond) Pond ass IdeCornick Cr. 1 H (mond) Pond ass IdeCornick Cr. 1 B Mouth to 1	nley Cr Culv 5 to Manley Cr Culv 6	1	4	0.11	0	0	0	0	0	0	0	0	0	0	0
Janley Cr 2 Manley Cr 3 Janley Cr 3 Manley Cr 3 Janley Cr 3 Manley Cr 4 Manley Cr 4 Manley Cr 4 Macomick Cr 1 A Mouth to 1 McCommick Cr 1 B McCormic McCommick Cr 1 B McCormic McCommick Cr 1 D McCormic McCommick Cr 1 D McCormic McCommick Cr 1 T Top of Mc McCommick Cr 1 G (pond) Pond assx McCommick Cr 1 I (fond) Pond assx McCommick Cr 1 I Top of Mc McCommick Cr 1 B Mouth to 1 Mill Cr 1 A Mouth to 1	nley Cr Culv 6 to Manley Cr Culv 7	1	4	0.03	0	0	0	0	0	0	0	0	0	0	0
Wanley Cr 3 Manley Cr Wanley Cr 4 Manley Cr Wanley Cr 4 Mouth to 1 WacCormick Cr 1 A Mouth to 1 WcCormick Cr 1 B McCormic WcCormick Cr 1 C McCormic WcCormick Cr 1 C McCormic WcCormick Cr 1 C McCormic WcCormick Cr 1 E (pond) Pond ass WcCormick Cr 1 F To go of Mc WcCormick Cr 1 H (pond) Pond ass WcCormick Cr 1 I To go of Mc WcCormick Cr 1 H To go of Mc WcCormick Cr 1 H Mouth to f Will Cr 1 A Mouth to f	nley Cr Culv 7 to Manley Cr Culv 8	4	1	0.34	0	0	0	0	0	0	0	0	0	0	0
Wanley Cr Manley Cr McCormick Cr 1 A Mouth to 1 McCormick Cr 1 B McCormic McCormick Cr 1 D McCormic McCormick Cr 1 D McCormic McCormick Cr 1 D McCormic McCormick Cr 1 E (pond) Pond ass McCormick Cr 1 G (pond) Pond ass McCormick Cr 1 H (pond) Mouth to 7 Mill Cr 1 A Mouth to 7	nley Cr Culv 8 to Manley Cr Culv 9	4	1	0.11	0	0	0	0	0	0	0	0	0	0	0
McCormick Cr 1 A Mouth to 1 McCormick Cr 1 B McCormic McCormick Cr 1 B McCormic McCormick Cr 1 C McCormic McCormick Cr 1 D McCormic McCormick Cr 1 F [pond] Pond ass McCormick Cr 1 F [pond] Pond ass McCormick Cr 1 G (pond) Pond ass McCormick Cr 1 H (pond) Pond ass McCormick Cr 1 I Top of Mc McCormick Cr 1 M Mouth to 1 Mill Cr 1 A Mouth to 1 Mill Cr 1 B Mill Cr 1 B	nley Cr Culv 9 to Manley Cr Culv 10	0	0	0.07	0	0	0	0	0	0	0	0	0	0	0
McCormick Cr 1 B McCormic McCormick Cr 1 C McCormic McCormick Cr 1 D McCormic McCormick Cr 1 D McCormic McCormick Cr 1 E (pond) Pond asso McCormick Cr 1 F Top of Mc McCormick Cr 1 H (pond) Pond asso McCormick Cr 1 H (pond) Mouth to Pond McCormick Cr 1 H (pond) Mouth to Pond McCormick Cr 1 B Mouth to Pond Mill Cr 1 A Mouth to Pond Mill Cr 1 B Mill Cr 1 B	nley Cr Culv 10 to end of potential coho/std	0	0	0.71	0	0	0	0	0	0	0	0	0	0	0
McCormick Cr 1 C McCormic McCormick Cr 1 D McCormic McCormick Cr 1 E (pond) Pond assx McCormick Cr 1 F Top of Mc McCormick Cr 1 G (pond) Pond assx McCormick Cr 1 G (pond) Pond assx McCormick Cr 1 G (pond) Pond assx McCormick Cr 1 H (pond) Pond assx McCormick Cr 1 H Top of Mc McCormick Cr 1 H Mouth to f Mill Cr 1 A Mouth to f	th to McCormick Cr Culv 1	2	3	0.95	0	0	0	0	0	0	0	0	0	0	0
AcCormick Cr 1 D McCormic Accormick Cr 1 E (pond) Pond ass Accormick Cr 1 F Top of Mc Accormick Cr 1 G (pond) Pond ass Accormick Cr 1 G (pond) Pond ass Accormick Cr 1 H (pond) Pond ass Accormick Cr 1 T Top of Mc Accormick Cr 1 B Mouth to P Mill Cr 1 A Mouth to T	Cormick Cr Culv 1 to McCormick Cr Culv 2	4	1	0.87	0	0	0	0	0	0	0	0	0	0	0
VdcCormick Cr 1 E (pond) Pond ass vdcCormick Cr 1 F (pond) Top of Mc VdcCormick Cr 1 G (pond) Pond ass vdcCormick Cr 1 H (pond) Pond ass vdcCormick Cr 1 H (pond) Pond ass vdcCormick Cr 1 H (pond) Mouth to f vdcCormick Cr 1 H (pond) Mouth to f vdil Cr 1 A Mouth to f	Cormick Cr Culv 2 to McCormick Cr LB Trib	4	1	0.43	0	0	0	0	0	0	0	0	0	0	0
VdcCormick Cr 1 E (pond) Pond ass vdcCormick Cr 1 F (pond) Top of Mc VdcCormick Cr 1 G (pond) Pond ass vdcCormick Cr 1 H (pond) Pond ass vdcCormick Cr 1 H (pond) Pond ass vdcCormick Cr 1 H (pond) Mouth to f vdcCormick Cr 1 H (pond) Mouth to f vdil Cr 1 A Mouth to f	Cormick Cr LB Trib to McCormick Cr Culv 2	4	1	0.03	0	0	0	0	0	0	0	0	0	0	0
AcCormick Cr 1 F Top of Mc AcCormick Cr 1 G (pond) Pond asso AcCormick Cr 1 H (pond) Pond asso AcCormick Cr 1 H (pond) Pond asso AcCormick Cr LB Trib Mouth to o Aill Cr 1 A Mouth to 1 Mill Cr 1 B Mill Cr 15	nd associated with McCormick Cr Culv 2	4	1	0.13	0	0	0	0	0	0	0	0	0	0	0
AcCormick Cr 1 G (pond) Pond ass: AcCormick Cr 1 H (pond) Pond ass: AcCormick Cr 1 I Top of Mc AcCormick Cr LB Trib Mouth to e Mill Cr 1 A Mouth to f Mill Cr 1 B Mill Cr Fis	of McCormick Cr 5 (pond) to McCormick Cr Culv 4	4	1	0.41	0	0	0	0	0	0	0	0	0	0	0
IncCormick Cr 1 H (pond) Pond assort IncCormick Cr 1 I Top of Mic IncCormick Cr LB Trib Mouth to 0 Inil Cr 1 A Mouth to 1 Mill Cr 1 B Mill Cr Fis	nd associated with McCormick Cr Culv 4	4	1	0.11	0	0	0	0	ō	ō	0	0	Ō	Ō	Ō
IncCormick Cr 1 I Top of Mc IncCormick Cr LB Trib Mouth to € Mill Cr 1 A Mouth to ₹ Mill Cr 1 B Mill Cr Fis	a associated with McCormick Cr Culv 5	4	1	0.10	0	0 0	0	Ő	ŏ	õ	õ	0	õ	õ	ő
IcCormick Cr LB Trib Mouth to 6 fill Cr 1 A Mouth to 1 fill Cr 1 B Mill Cr Fis	of McCormick Cr 8 (pond) to end of potential coho/std	4	1	0.13	0	0	0	Ő	ŏ	0	0	0	0	õ	ő
Aill Cr 1 A Mouth to Mill Cr 1 B Mill Cr Fis	th to end of pre std	4	1 1	0.29	0	0	0	0	ŏ	ő	ŏ	0	ŏ	ŏ	ŏ
Aill Cr 1 B Mill Cr Fis	uth to Mill Cr Fishway	2	3	0.34	ů ů	0 0	0	Ő	ŏ	õ	õ	õ	õ	ŏ	Ő
	Cr Fishway to Mill Cr Culv 1	4	1	0.72	0	0	0	0	Ő	ő	õ	õ	ŏ	õ	ő
	Cr Culv 1 to Mill Cr Culv 2	4	1	0.72	0	0	0	0	0	0	0	0	ő	0	0
	Cr Culv 2 to end of coho/std, joins with Salmon Cr Trib Mill Cr	4	1	1.15	0	0	0	0	0	0	0	0	0	0	0
	and a second of the second of	+ -	1	34.81	Ť	14.8764	4.9864	52.0996	r i	13.755	0	29.94	3	6.1078	22.15
		-		34.01		Total M+T	4.9604	52.0996		Total M+T	13.755	29.94		0.1078	22.15
							19.0020	92.0990			13.755	29.94		├ ──┤	H
pact Partitioning Assumptions		-												↓ ↓	I
artitioning of Impacts:	<u>.</u>														I
orth Fork Lewis to LaCenter = 2.0 cfs in															I
aCenter to Stoughton Creek = 1.5 cfs in) cfs impact														I
toughton Creek to Storhdahl Ponds = 1.	o cfs impact c fs impact														I
tordahl Ponds to Daybreak = 0.5 cfs imp	– c fs impact i cfs impact is = 1.0 cfs impact											-			1
artitioning is for illustrative purposes and	- c fs impact c fs impact ds = 1.0 cfs impact cfs impact														
	– c fs impact i cfs impact is = 1.0 cfs impact														
ther Assumptions	- c fs impact c fs impact ds = 1.0 cfs impact cfs impact														
	- c fs impact c fs impact ds = 1.0 cfs impact cfs impact														
o debit assumed upstream of Daybreak	o cfs impact o cfs impact ds = 1.0 cfs impact cfs impact cfs impact es and can be refined based on modeling results	tary imp	acts is needed						I T						<u> </u>
o benefit assumed in tribs to Rock Cree	o cfs impact i cfs impact i cfs impact ds = 1.0 cfs impact cfs impact es and can be refined based on modeling results nd Manley Creeks are likely, but not quantified or modeled. Consideration of tribu	tary impa	acts is needed.	1					-]					I – – – – – – – – – – – – – – – – – – –	1
ssumes 0.92 CFS water right value - ac	o fcfs impact of simpact ds = 1.0 cfs impact cfs impact cfs impact es and can be refined based on modeling results nd Manley Creeks are likely, but not quantified or modeled. Consideration of tribu ybreak	tary impa	acts is needed.												

HDR

Lower Columbia Fish Recovery Board Integrated Strategy for Implementing Water Right Reservations Project No. 80479 March 2009

F-12

Attachment G Guidelines for Performance Standards

Table G-1.	Side Channel	Off Channel Habitat	Restoration Performa	nce Standards.
	Side Chamier	on channel mability	itestoration i cristina	ice ofullaul abi

Objective	Performance Standards	Monitoring
Objective		Frequency
	An "As-Built" survey must be completed after construction. The "as- built" should meet the specifications defined in the proposed design.	
	If differences between the proposed design and "as-built" exist,	
Continued	justification must be provided to meet this performance standard.	
function as	Structural components should be evaluated using standard	Upon
designed	engineering protocols.	Completion
	The side-channel will remain connected to the stream. However	
Continued	recognizing the dynamic nature of stream channels, adaptive	
function as	management provisions may be implemented to meet this standard	Years 1, 3,
designed	if the provisions are accepted by Ecology and WDFW.	5, and 10
Enhance native		
trees and Shrubs	Planted woody species in the upland buffer at the mitigation site will	
in the Riparian	achieve \geq 50% percent survival after the site is planted. If all dead	Years 1, 3,
Zone	woody plantings are replaced, the performance measure will be met.	5, and 10
	Control of noxious plant species will meet state and local	
Minimize	requirements (see applicable list for the County of interest). Invasive	Years 5 and
Invasive Species	species will be controlled to protect habitat quality	10
Enhance native		
trees and Shrubs	2 lover ringrian vegetation presence (preparties of reach) will	
in the Riparian	3-layer riparian vegetation presence (proportion of reach) will increase by $\ge 20\%$ ten years after initial planting	Year 10
Enhance native	$\frac{1}{10000000} = 20\% \text{ for years after initial planting}$	
trees and Shrubs		
in the Riparian	Mean percent canopy density at the bank will increase by \geq 20% ten	
Zone	years after initial planting	Year 10

Adapted from the Washington State Salmon Recovery Funding Board action effectiveness monitoring protocols (2008).

Table G-2. In-Channel Improvements Performance Standards.

		Monitoring
Objective	Performance Standards	Frequency
	An "As-Built" survey must be completed after construction. The	
Continued function	"as-built" should meet the specifications defined in the proposed	
of Instream	design. If differences between the proposed design and "as-built"	
Structures as	exist, justification must be provided to meet this performance	
designed or	standard. Structural components should be evaluated using	Upon
placed	standard engineering protocols.	Completion

Adapted from the Washington State Salmon Recovery Funding Board action effectiveness monitoring protocols (2008).

Table G-3.	Wetland Performance Standards.

Objective	Performance Standards	Monitoring Frequency
Achieve hydrological	In the intended wetland area, soils will be saturated to the	Trequency
conditions necessary to re-		
establish, rehabilitate, or	surface, or standing water will be present within 12 inches	
create new wetland	of the surface for at least consecutive weeks (
	percent) of the growing season in years when rainfall meets	
acreage.	or exceeds the 30-year average at the mitigation site.	Every Year
Achieve hydrological		
conditions necessary to re-		
establish, rehabilitate, or	The wetland area at the mitigation site will be delineated	
create new wetland	using current methods to assure that the mitigation site	
acreage.	contains acres of wetland.	Year 10
	Aerial cover of native, wetland (facultative and wetter)	
Enhance native plant	herbaceous plant species will be at least percent in the	Years 1 and
community in Wetland	emergent wetland at the mitigation site.	10
	Planted woody species in the scrub-shrub (and/or forested)	
	wetland at the mitigation site will achieve at least	
	percent survival one year after the site is planted. If all dead	
Enhance native plant	woody plantings are replaced, the performance measure	
community in Wetland	will be met.	Year 1
	Native woody species (planted and volunteer) will achieve	
Enhance native plant	an average density of at least plants per in the	Years 1 and
community in Wetland	scrub-shrub (and/or forested) wetland at the mitigation site.	3
•	Aerial cover of native woody species will be at least	
Enhance native plant	percent in the scrub-shrub (and/or forested) wetland at the	Years 5 and
community in Wetland	mitigation site.	10
, , , , , , , , , , , , , , , , , , ,	Planted woody species in the upland buffer at the mitigation	
	site will achieve percent survival one year after the site	
Enhance trees and Shrubs	is planted. If all dead woody plantings are replaced, the	
in the Upland Buffer	performance measure will be met.	Year 1
	Native woody species (planted and volunteer) will achieve	
Enhance trees and Shrubs	an average density of at least plants per in the	Years 1 and
in the Upland Buffer	upland buffer at the mitigation site.	3
Enhance trees and Shrubs	Aerial cover of native woody species will be at least	Years 5 and
in the Upland Buffer	percent in the upland buffer at the mitigation site.	10
	At least native, facultative and wetter woody plant	
	species will achieve a minimum percent relative cover	
Achieve Woody Plant	for each species in the scrub-shrub (and/or forested)	Years 5 and
Species Diversity	wetland at the mitigation site.	10
	Control of noxious plant species will meet state and local	10
	requirements (see applicable list for the County of interest).	Years 5 and
Minimize Invasivo Sposico	Invasive species will be controlled to protect habitat quality	10
Minimize Invasive Species		10
	Wildlife habitat structures including snags and large woody debris piles will be present at the mitigation	
Establish Habitat		First Veer
Establish Habitat	site.	First Year

Note: some percentages to be filled in on a case-by-case basis.

Adapted from <u>Washington State Department of Transportation: "Writing</u> Performance Measures and Performance Standards for Wetland Mitigation" (2008). The wetland performance standards allow for case-specific customization because of the variable nature of site limitations.

Objective	Performance Standards	Monitoring Frequency
	An "As-Built" survey must be completed after construction. The	ricqueriey
Implement the	"as-built" should meet the specifications defined in the proposed	
floodplain	design. If differences between the proposed design and "as-	
reconnection as	built" exist, justification must be provided to meet this	
described in the	performance standard. Structural components should be	Upon
construction plans.	evaluated using standard engineering protocols.	Completion

 Table G-4. Floodplain Reconnection Performance Standards.

Adapted from the Washington State Salmon Recovery Funding Board action effectiveness monitoring protocols (2008).

 Table G-5. Stream Riparian Restoration and Preservation Actions

		Monitoring
Objective	Performance Standards	Frequency
Enhance native trees and Shrubs in the Riparian Zone	Planted woody species in the upland buffer at the mitigation site will achieve ≥% percent survival. If all dead woody plantings are replaced, the performance measure will be met.	Year 1, 3, 5, and 10
Minimize Invasive Species	Control of noxious plant species will meet state and local requirements (see applicable list for the County of interest). Invasive species will be controlled to protect habitat quality	Year 5 and Final
Enhance native trees and Shrubs in the Riparian Zone	3-layer riparian vegetation presence (proportion of reach) will increase by $\ge 20\%$ ten years after initial planting	Year 10
Enhance native trees and Shrubs in the Riparian Zone	Mean percent canopy density at the bank will increase by ≥ 20% ten years after initial planting (note: only for bank revegetation projects)	Year 10

Note: some percentages to be filled in on a case-by-case basis.

Adapted from the Washington State Salmon Recovery Funding Board action effectiveness monitoring protocols (2008).

Attachment H **Data Used in Determining In-Lieu Payment**

The following procedure was developed to define the in lieu payment amount:

1. <u>Collect Cost Data:</u> Cost data for completing mitigation actions were collected from several sources and compared against each other (Table 1). Simple averages were calculated when more than one source was relevant to a mitigation action. Costs were escalated to 2008 dollars.

Mitigation Action	Unit	SRFB PRISM ¹	Puget Sound Shared Strategy ²	Snohomish Wetland Bank ³	Average Base Cost
Riparian Restoration		TRISM	\$63,972	Dalik	\$63,972
Riparian Restoration	per acre		\$05,972		\$05,972
In-Channel Improvements	per 100 sq. ft	\$31,808	\$34,894		\$33,351
Side Channel/ Off Channel Habitat	per 100 sq.				
Restoration	ft	\$31,808	\$98,865		\$65,337
Wetland Creation and Land Acquisition	per acre			\$174,240	\$174,240
Floodplain Reconnection	per acre		\$29,078		\$29,078

Table 1. Average cost data for mitigation actions.

¹ <u>http://www.rco.wa.gov/rco/prism/prism.htm</u> ² <u>http://www.sharedsalmonstrategy.org/files/PrimeronHabitatProjectCosts.pdf</u>

³ http://www.habitatbank.com/snohomishbank.html

Add costs from land acquisition, monitoring and maintenance, and overhead. Land acquisition costs were estimated from two different sources and averaged (Table 2). Costs were escalated to 2008 dollars. Monitoring/ maintenance costs were calculated as percentages of the average base cost and were derived from the percent Clark County Public Works (CPW) has spent on mitigation projects in 2007- 2008 (phone interview, CPW, Karen Streeter). Overhead costs are not derived from existing cost data, but are meant to cover typical administration of in lieu fees, associated mitigation project oversight, and reporting to the Department of Ecology.

Table 2. Land Acquisition Costs.

Mitigation Action	SRFB	Shared	Average
	PRISM ¹	Strategy	Base Cost
Land Acquisition Fee Simple (per acre)	\$77,521	\$48,851	\$63,186

Table 3 lists total mitigation costs with all of these elements included. For projects where access is required but land requirements are minimal, a cost was derived by pro-rating land acquisition costs to the quantity of land indicated (e.g. 100 square feet), then multiplying by ten. This reflects the expectation that some of those projects may require a small acquisition of land or

access rights; but many projects will involve access rights granted freely by public or private landholders.

Mitigation Action	Unit	Average Base Cost	Land Acquisition (fee simple)	Monitoring and Maintenance (14%)	Overhead (5%)	Total
Riparian Restoration	per acre	\$63,972	\$63,186	\$8,956	\$3,199	\$139,312
In-Channel Improvements	per 100 sq. ft	\$33,351	\$1,451	\$4,669	\$1,668	\$41,138
Side Channel/ Off Channel Habitat Restoration	per 100 sq. ft	\$65,337	\$1,451	\$9,147	\$3,267	\$79,201
Wetland Creation and Land Acquisition	per acre	\$174,240	\$0	\$0	\$0	\$174,240
Floodplain Reconnection	per acre	\$29,078	\$63,186	\$4,071	\$1,454	\$97,789

Table 3. Total Mitigation Cost per habitat unit.

2. <u>Normalize costs according to the habitat mitigation point system.</u> Since the impact of concern is always flow depletion, but the mitigation actions vary in their function and units of measure, a point system was applied. The point system defines the value of each mitigation action relative to the common flow depletion impact. An in lieu payment for flow depletion assumes that the administrator will carry out the mitigation actions with money paid by the applicant, and that the money will fully mitigate for the flow impacts. Therefore, the mitigation costs must be normalized to the point system (Table 4). Since one in lieu fee value is desired, the costs among the mitigation actions and reach tiers must be averaged (Tables 5 and 6). The Reach tier costs had a weighted average based on how the LCFRB intends to implement mitigation actions with the in lieu funding.

			Mitig	ation F	oints	Cost p	er Mitigation	n Point
		Average	Tier	Tier	Tier			
Mitigation Action	Unit	Cost	1	2	3-4	Tier 1	Tier 2	Tier 3-4
Riparian Acquisition	per acre	\$63,186	15	12	7	\$4,212	\$5,266	\$9,027
Riparian Restoration	per acre	\$139,312	30	15	12	\$4,644	\$9,287	\$11,609
In-Channel Improvements	per 100 sq. ft	\$41,138	15	9	3	\$2,743	\$4,571	\$13,713
Side Channel/ Off Channel Habitat Restoration	per 100 sq. ft	\$79,201	15	9	3	\$5,280	\$8,800	\$26,400
Wetland Creation and Land Acquisition	per acre	\$174,240		15		\$11,616	\$11,616	\$11,616
Floodplain Reconnection	per acre	\$97,789	15	12	6	\$6,519	\$8,149	\$16,298
Average						\$5,836	\$7,948	\$14,777

Table 4. Cost per Mitigation Point

Cost p	per Mitigation	n Point
Tier 1	Tier 2	Tier 3-4
\$5,836	\$7,948	\$14,777

Table 6. Weighted Average Cost per Mitigation Point

Average Cost per Mitigation Point						
Tier 1	Tier 2	Tier 3-4				
85%	15%	0%				
\$5,836	\$7,948	\$14,777				
	\$6,153					

If fees are based on cfs-miles, an assumption of average points per 0.1 cfs-miles must be made. The subcommittee agreed that an average 10 depletion points per 0.1 cfs-mile (tier 1, flow limited) should be assumed, resulting in a fee of **\$ 61,530 per 0.1 cfs-mile** charged to an applicant. The subcommittee also agreed to round to the nearest thousand dollars, resulting in a fee of \$62,000 per 0.1 cfs-mile. This amount can be pro-rated in increments of 0.01 cfs-mile (e.g. the in-lieu payment for an impact of 0.05 cfs-mile would be \$30,765).

Attachment I Review of Extent and Validity in Water Rights Transfers

One type of mitigation action discussed for accessing reserved water supplies in WRIAs 25-28 is acquisition and retirement of existing water rights. It is important that applicants for reserved supplies recognize the complexities of using water rights acquisitions as a mitigation action. This appendix briefly summarizes some of these complexities. Applicants should thoroughly assess how much "credit" will be recognized by the Washington State Department of Ecology, before purchasing water rights for mitigation. In many cases this may require consultation with Ecology, and potentially professional assistance from experts on water rights transfers.

Ecology has developed written policies to guide its staff in evaluating water rights. Policy 1200 (January 1999) addresses evaluation of changes or transfers to water rights. Policy 1120 (August 2004) addresses how the Department conducts evaluations of water rights for transfers and other purposes. These two policies require Ecology staff to consider the following elements in evaluating the validity and extent of water rights transferred:

- Whether and how the water right was perfected. This includes consideration of whether beneficial use was established using reasonably efficient practices;
- Whether the water right has been abandoned or is subject to relinquishment;
- Potential impairment of other water rights or applications filed previously;
- Conflict with statutes, rules or the public interest;
- Whether the water right has previously been put to beneficial use (and how much of the nominal water right has actually been used);
- Whether the water right is based on the statutory exemption from permit requirements for certain uses of ground water (i.e. "exempt wells").
- The amount of water appropriated cannot be increased through a transfer;
- Seasonality of the prior use and the new planned use;
- Whether the transfer may cause a change in return flow to surface water or ground water;
- Transfers approved by Ecology may include conditions limiting exercise of the right.
- In some cases, only a portion of a water right may be eligible for transfer.
- Ecology may require the applicant for a transfer to provide records, data and other information in order to evaluate the extent and validity of the water right.

The list here is only a brief summary of applicable policies. For more details, applicants should review the actual policy documents cited above, or contact Ecology Water Resources Program staff and/or other experts on Washington State water law.